
HUMAN-COMPUTER INTERACTION PLATFORM FOR THE HEARING

IMPAIRED IN HEALTHCARE AND FINANCE APPLICATIONS

by

Necati Cihan Camgöz
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ABSTRACT

HUMAN-COMPUTER INTERACTION PLATFORM FOR

THE HEARING IMPAIRED IN HEALTHCARE AND

FINANCE APPLICATIONS

In this thesis, we propose a human-computer interaction platform for the hear-

ing impaired, that would be used in hospitals and banks. In order to develop such a

system, we collected BosphorusSign, a Turkish Sign Language corpus in health and

finance domains, by consulting sign language linguists, native users and domain spe-

cialists. Using a subset of the collected corpus, we have designed a prototype system,

which we called HospiSign, that is aimed to help the Deaf in their hospital visits. The

HospiSign platform guides its users through a tree-based activity diagram by asking

specific questions and requiring the users to answer from the given options. In order

to recognize signs that are given as answers to the interaction platform, we proposed

using hand position, hand shape, hand movement and upper body pose features to

represent signs. To model the temporal aspect of the signs we used Dynamic Time

Warping and Temporal Templates. The classification of the signs are done using k-

Nearest Neighbors and Random Decision Forest classifiers. We conducted experiments

on a subset of BosphorusSign and evaluated the effectiveness of the system in terms

of features, temporal modeling techniques and classification methods. In our exper-

iments, the combination of hand position and hand movement features yielded the

highest recognition performance while both of the temporal modeling and classifica-

tion methods gave competitive results. Moreover, we investigated the effects of using a

tree-based activity diagram and found the approach to not only increase the recognition

performance, but also ease the adaptation of the users to the system. Furthermore,

we investigated domain adaptation and facial landmark localization techniques and

examined their applicability to the gesture and sign language recognition tasks.
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ÖZET

SAĞLIK VE FİNANS UYGULAMALARINDA İŞİTME

ENGELLİLERİN İŞARET DİLİ İLE BİLGİSAYAR

ETKİLEŞİM PLATFORMU

Bu tezde, işitme engellilerin hastane ve bankalarda kullanmaları amacıyla tasar-

lanmış bir insan-bilgisayar etkileşim platformu önerilmektedir. Söz konusu sistemin

geliştirilmesi için öncelikle sağlık ve finans alanlarında işaretler içerin BosphorusSign

Türk İşaret Dili veritabanı toplanmıştır. Veritabanı için dil bilimcilere, Türk İşaret Dili

kullanıcılarına ve ilgili alanların uzmanlarına danışılmıştır. Toplanan veritabanının bir

alt kümesi kullanılarak hastanelerde işitme engellilerin iletişimine yardımcı olacak Hos-

piSign sistemi tasarlanmıştır. HospiSign platformu kullanıcılarına önceden belirlenmiş

soruları ve bu sorulara verebileceği cevapları sunarak, ağaç tabanlı bir etkinlik diya-

gramı ile kullanıcıları yönlendirmektedir. HospiSign’a cevap olarak verilen işaretleri

tanıyabilmek için ellerin şeklini, pozisyonunu, hareketini, ve üst vücudun duruşunu

niteleyen öznitelikler kullanılmıştır. İşaretlerin zamansal özellikleri Dinamik Zaman

Bükmesi ve Zamansal Şablonlar kullanılarak modellenmiştir. İşaretler k-En Yakın

Komşu algoritması ve Rassal Karar Ormanları kullanılarak sınıflandırılmaktadır. Sis-

temin öznitelik, zamansal modelleme ve sınıflandırma yönlerinden değerlendirilmesi

için BosphorusSign veritabanının bir alt kümesinde deneyler yapılmıştır. Deneyler

sonucunda ellerin pozisyonu ve hareketini niteleyen özniteliklerin birlikte kulanımının

en yüksek başarımı verdiği görülmüştür. Farklı zamansal modelleme ve sınıflandırma

yaklaşımlarından ise birbirlerine yakın başarımlar elde edilmiştir. Yapılan deneyler

sonucunda ağaç tabanlı etkinlik diyagramı kullanımının sistem başarımını arttırmanın

yanı sıra kullanıcı adaptasyonunu da hızlandırdığı görülmüştür. Bu çalışmalara ek

olarak, alan uyarlama ve yüzel nirengi noktası bulma yöntemleri incelenmiş, ve işaret

dili ve işmar tanıma problemleri için kullanılabilirlikleri sınanmıştır.
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1. INTRODUCTION

According to the 2000 Turkish Statistical Institute census, there are 109.000 peo-

ple with total hearing disability in Turkey. In their daily routines, the hearing impaired

are forced to use either written materials or the aid of an accompanying Turkish Sign

Language (Türk İşaret Dili, TİD) interpreter to establish basic communication since

they are unable to use speech as a medium of communication. The staggeringly low

literacy rate among the hearing impaired greatly reduces the integration of this popu-

lation, thus creating both a social and an economic disadvantage.

Sign Languages are the main communication medium of the hearing impaired

people. These languages differ from country to country. Turkish Sign Language is

used by hearing impaired people of Turkish origin. Like other sign languages, TİD

conveys meaning through combinations of hand shapes, hand movements, facial ges-

tures and upper body postures that are unique to it. In 2005, as part of the European

Union integration effort, the Turkish Social Services Law made it mandatory for all

governmental organizations and offices to employ a TİD interpreter. In 2006, the use

of TİD and the task of training TİD interpreters were introduced through regulations

into the Turkish Social Services Law. Since it is neither practicable nor economically

feasible to train and employ TİD interpreters for every government office, practical

solutions like establishing sign language translation call centers that employ TİD in-

terpreters are considered. The ideal solution to such an issue is the recognition and

translation of sign languages to speech through the use of technology. Such a system

would diminish the need for sign language interpreters, while fully integrating the hear-

ing impaired. However, the technology needed for such a system is beyond the current

state-of-the-art. Today’s technology only allows for sign-to-speech translation systems

with extremely limited corpora that are heavily user dependent.

In this thesis, we present a human-computer interaction platform that is designed

to assist the Deaf in their hospital and bank visits. In order to develop the proposed

system, we first developed a corpus collection software which records depth map, color
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video, user mask and human body pose information that are provided by the Mi-

crosoft Kinect v2 sensor. By consulting with healthcare and finance professionals, TİD

linguists and native TİD users, we have created a list of commonly used words and

phrases that a deaf person would use in order to receive healthcare and finance ser-

vices. Using our corpus collection software, we collected BosphorusSign, a Turkish Sign

Language Recognition (SLR) corpus in health and finance domains. Using a subset of

BosphorusSign, we created HospiSign, an interface aimed for healthcare services, that

allows its user to communicate in sign language, by recognizing signed phrases. In Hos-

piSign, we proposed a tree-based activity diagram interaction scheme that asks specific

questions and requires users to answer from given options, thus easing the recognition

task. Furthermore, the interface software was designed to be easily converted to other

applications, such as banking applications.

We proposed using several features, temporal modeling techniques and classifi-

cation methods for sign language recognition. As features, we extracted upper body

pose, hand shape, hand position and hand movement features from the data provided

by the Microsoft Kinect v2 sensor to model the spatial features of the signs. We model

the temporal aspect of the signs by using Dynamic Time Warping (DTW) and Tem-

poral Templates (TT). Finally, we classify spatio-temporal features extracted from the

isolated sign phrases using k-Nearest Neighbors (k-NN) and Random Decision Forest

(RDF) classifiers.

We evaluated the performance of the proposed recognition scheme on a subset

of the BosphorusSign corpus, that contains a total of 662 samples of 33 signs, which

were collected from three native TİD users. We investigated each feature’s effect on

the recognition performance and compared temporal modeling and classification ap-

proaches. In our experiments, combining hand position and hand movement features

achieved the highest recognition performance while both of the temporal modeling and

classification approaches yielded similar recognition results. Moreover, we inspected

the outcome of using the tree-based activity diagram interaction scheme and came to

the conclusion that this approach not only increases the recognition performance, but

also fastens the users’ adaptation to the system.
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Furthermore, we examined the applicability of domain adaptation techniques to

the hand gesture recognition problem. We proposed using a feature augmentation

method, namely Frustratingly Easy Domain Adaptation [3], to improve hand drawn

digit gesture recognition performance by transferring information from hand written

digits. In addition, we studied facial landmark localization methods that are widely

used in sign language recognition. We proposed an extension to the Supervised Descent

Method (SDM) [1], which is the state-of-the-art facial landmark localization method

in color images, and adapted the method to work on depth images. The proposed

method, which we called Supervised Ridge Descent (SRD) [4], achieved state-of-the-

art performance on frontal depth images.

The rest of this thesis is organized as follows. We review the state-of-the-art

Sign Language Recognition methods, applications and available sign language corpora

in Chapter 2. We present the BosphorusSign TİD corpus in Chapter 3 and specify

the corpus collection procedure. In Chapter 4, we describe the HospiSign interface.

We layout our proposed method in terms of extracted features, applied normalization

techniques, proposed temporal modeling approaches and used classification methods

in Chapter 5. We define our experimental setup and report our results in Chapter 6.

We share our work on the application of domain adaptation techniques to the ges-

ture recognition problem in Chapter 7 and the proposed facial landmark localization

method, Supervised Descent Method, in Chapter 8. Finally, we discuss our findings

and state the possible future work in Chapter 9.
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2. SIGN LANGUAGE RECOGNITION METHODS,

APPLICATIONS AND AVAILABLE CORPORA

Many hearing-impaired people cannot express themselves clearly in public since

they are unable to use speech as a medium of communication, yet a large part of

the hearing population cannot communicate with the deaf because they do not know

sign language. In some cases, this challenge may be solved with either the use of an

interpreter or through written material. However, many hearing-impaired people do

not know how to read and write. In case of emergencies where the time is extremely

valuable, such as when a Deaf person visiting a hospital with an urgent issue, the

inability to communicate becomes a more pressing problem. A possible solution to

this problem is using Sign Language Recognition systems to create a communication

medium for the Deaf.

With the development of machine learning and computer vision algorithms and

the availability of different sign language databases, there has been an increasing num-

ber of studies in Sign Language Recognition (SLR). A fundamental problem in sign

language research is that signs are multimodal time series, meaning many signals are

sent simultaneously to express meaning through hand and body movements, and there-

fore it is hard to spot and model these modalities in consecutive frames [5].

Among many methods, Hidden Markov Models (HMMs) [6] and Dynamic Time

Warping (DTW) [7] based methods are still the most popular machine learning tech-

niques to solve the modeling problem. Both of these methods are widely used in

applications ranging from speech recognition to robot tracking. Starner and Pent-

land [8] introduced a real-time HMM-based system that can recognize American Sign

Language phrases in sentence-level without any explicit model of the fingers. In a

signer-dependent platform, Grobel and Assan [9] achieved a recognition rate of 94% on

an isolated sign database that included 262 signs of the Sign Language of the Nether-

lands. Other approaches, such as Parallel Hidden Markov Models (PaHMMs) [10] and
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HMM-based threshold model [11], are also used in gesture and sign language recog-

nition systems. Chai et al. [12] used DTW based classifiers to develop a translation

system similar to HospiSign, as it interprets Chinese Sign Language to Spoken Lan-

guage and vice versa. In more recent studies, Pitsikalis and Theodorakis et al. [13,14]

used DTW to match subunits in Greek Sign Language for recognition purposes.

Prior to the release of consumer depth cameras, such as the Microsoft Kinect sen-

sor [15], many computer vision researches had to use color and data gloves, embedded

accelerometers and video cameras to capture a user’s hand and body movements for

sign language recognition [16]. However, the Microsoft Kinect sensor provides color

image, depth map, and real-time human pose information [17], by which it diminishes

the dependency to such variety of sensors.

In the rest of this chapter, we are going to discuss the methods and applications

in sign language research in three categories: educational tools, translation and recog-

nition systems, and community-aid applications. A summary of these sign language

recognition applications can be seen in Table 2.1. Then we are going to examine the

available corpora that is being used in sign language recognition research.

2.1. Educational Tools

Recently there have been studies on teaching sign language to non-native signers,

including non-hearing-impaired people. Aran et al. have developed a sign language

tutoring platform, SignTutor [20], which aims to teach sign language through practice.

Using an interactive 3D animated avatar, the SignTutor enables its users to learn

sign language by watching new signs and validate their performances through visual

feedback. The system uses a left-to-right continuous HMM classifier for verification,

and gives feedback on user’s performance in terms of manual (handshape, motion and

location, etc.), and non-manual (facial expressions and body movements) features for

a selected sign. The performance of the SignTutor is evaluated on a dataset of 19 signs

from American Sign Language (ASL) and reports the results for signer-depended and

signer-independent scenarios in a real-life setting.
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On a database of 1,204 signed phrase samples collected from 11 deaf children

playing the CopyCat, which is a gesture-based educational game for deaf children,

Zafrulla et al. [21] have performed real-time ASL phrase verification using HMMs with

a rejection threshold. During the game, a child is required to wear two different-colored

gloves with embedded accelerometers on both hands. The child signs a particular

phrase displayed on the screen to a (hero) avatar selected at each game and then

the system determines whether (s)he has signed it correctly. If the child sign phrases

correctly, (s)he gains points and progresses through the game. The authors achieved

a phrase verification accuracy of 83% in their study even though many non-manual

features were not included to reduce the complexity of their system.

Zafrulla et al. [24] made further improvements in their existing CopyCat system

with a new approach to the automatic sign language recognition and verification tasks

by using the Microsoft Kinect sensor. A total of 1000 ASL phrases were collected

from two different platforms: CopyCat Adult and Kinect. For each of the 19 signs

in their vocabulary, the samples in the classes were trained with HMMs. Using their

previous work [29] as a baseline, the authors compared the performance of the Microsoft

Kinect based system on two phases, recognition and verification. The Kinect-based

system eliminates the need for color gloves and accelerometers, and gives comparable

results to the CopyCat system. Similarly, Gameiro et al. [28] have developed a system

that aims to help users to learn Portuguese Sign Language (LGP) through a game

using the Microsoft Kinect sensor. The system has two modes: the school-mode and

the competition mode. In the school mode, users learn new signs in classroom-like

environment, whereas in the competition-mode, users experiment their sign language

knowledge in a competitive game scenario (such as Quiz and Lingo).

In [22], Weaver and Starner introduced SMARTSign, which aims to help the

hearing parents of deaf children with learning and practicing ASL via a mobile phone

application. The authors share the feedback they received from the parents on the

usability and accessibility of the SMARTSign system. Furthermore, they interviewed

the parents in order to determine whether the SMARTSign can alleviate their problems

and discuss the ways they can improve their system.
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2.2. Translation and Recognition Systems

Hrúz et al. [23] have implemented an automatic translation system, which con-

verts finger spelled phrases to speech and vice versa, in a client-server architecture.

The goal of the study is not only to help a hearing-impaired person but also to assist

a visually impaired person to interact with others. The system supports many spoken

and sign languages, including Czech, English, Turkish and Russian, and the trans-

lation between these spoken languages are handled using the Google Translate API.

The recognition of multilingual finger spelling and speech was done using k-Nearest

Neighbors Algorithm (k-NN) and HMMs, respectively. In the fingerspelling synthesis

model, a 3D animated avatar is used to express both manual and non-manual features

of a given sign.

The Dicta-Sign [25] is a multilingual sign language research project that aims to

make Web 2.0 applications accessible for Deaf people so that they can interact with

each other. In their Sign Wiki prototype, the authors demonstrate how their system

enables sign language users to get information from the Web. Like Wikipedia, in which

users are asked to enter text as an input from their keyboard, sign language users can

search and edit any page they want, and interact with the system via a Microsoft

Kinect sensor in the Dicta-Sign Wiki. The Dicta-Sign is currently available in four

languages: British Sign Language (BSL), German Sign Language (DGS), Greek Sign

Language (GSL) and French Sign Language (LSF).

In a similar way, Karpov et al. [26] present their multimodal synthesizer system

for Russian (RSL) and Czech (CSE) sign languages that uses a 3D animated avatar

for synthesis. VisualComm [12, 27], a Chinese Sign Language (CSL) recognition and

translation tool, aims to help the Deaf to communicate with hearing people using the

Microsoft Kinect sensor in real-time. The system can translate a deaf person’s sign

phrases to text or speech and a hearing person’s text or speech to sign language using a

3D animated avatar. Based on 370 daily phrases, VisualComm achieves a recognition

rate of 94.2% and demonstrates that 3D sign language recognition can be done in

real-time by using the modalities provided by the Microsoft Kinect sensor.
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2.3. Community-Aid Applications

Community-aid applications are mainly designed to be used to help the deaf

community in their daily life. One of the earliest tools was the TESSA (Text and Sign

Support Assistant) [18,19], which was developed for the United Kingdom Post Offices

to assist a post office clerk in communicating with a Deaf person. The TESSA system

translates a postal officer’s (listener) speech into British Sign Language (BSL) and then

displays the signs to the screen with an avatar to a Deaf customer at the post office.

The authors used the entropic speech recognizer and performed semantic mapping on

a “best match” basis to recognize the most phonetically close phrase. Using a subset of

155 out of the 370 phrases, the system achieved a 13.2% error in its best performance,

whereas the language processor achieved an error rate of 2.8% on its semantic mapping

to choose the most likely phrase on a given utterance.

Lopez-Ludena et al. [30] have also designed an automatic translation system

for bus information that translates speech to Spanish Sign Language (LSE) and sign

language to speech. The system works in real-time and achieves a sign error rate of

9.4%.

2.4. Available Sign Language Recognition Corpora

Sign language is an active and challenging topic for linguistics and Sign Language

Recognition (SLR) research communities. Linguists are interested in analyzing sign

languages’ properties and rules, whereas computer scientists working on SLR aim to

develop systems that can automatically recognize sign language. However, due to

several factors such as the lack of high quality capture and annotation technology as

well as the absence of common transcription systems, the creation of corpora suitable

for sign language recognition and linguistic research only became feasible in the last

20 years [31].
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In sign language research literature, numerous sign language corpora exist with

different properties. Known sign language corpora can be grouped according to several

criteria such as acquisition method, language, research domain, context of content, size

and annotations.

One of the defining bottlenecks for the creation of sign language corpora was the

quality of the acquisition methods. Especially in the field of SLR, where data was

lost in the mapping from 3D world to 2D image space, meaningful capture of signs

became achievable with advances in computing, processing, and sensing technologies.

First efforts in the field involved instrumented gloves for data capture [32], while later

efforts involved RGB colored [8, 33–35] and depth based segmentation of signer hands

and body [36–38].

As can be seen in Table 2.2, the corpora used by linguistics and SLR communities

have their own properties in correlation with respective research interests. Linguisti-

cally motivated corpora are often large vocabulary datasets. They usually have higher

quality annotations to learn variation in sign performance, but fewer repetitions of

signs or clauses due to difficulty of acquisition and annotation. Recent trends in cor-

pora creation include creating datasets with large number of users from different regions

/ backgrounds to achieve widespread vocabulary coverage [39–41].

Contrary to linguistically motivated corpora, machine learning or sign language

recognition motivated corpora are created with smaller vocabulary. SLR consists of

a pipeline of subtasks such as human pose extraction, representation and statistical

modeling. All of these tasks are open research questions, which makes large vocabulary

SLR a challenging problem. Therefore, these corpora often contain few users, but a

higher number of repetitions per user to improve recognition performance [5]. While

linguistic corpora contain conversing people [48], recognition oriented corpora almost

always belong to single users performing signs or clauses [37]. A large number of these

corpora are recorded in constrained recorded environment settings such as dark [33] or

monotone backgrounds [36] to allow easier segmentation of human body and hand.
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Annotations of SLR oriented corpora are often composed of sign boundary infor-

mation while annotations of linguistic oriented corpora are more various and detailed.

Decades ago Stokoe defined sign language glosses as combinations of movements, hand

shapes and location [49]. However, many studies developed their own gloss based an-

notations. The creation of sign transcription methods, such as HamNoSys [50] and

SignWriting [51], together with the development and availability of time aligned anno-

tation software, such as ELAN [52] and iLEX [53], started standardization across sign

language corpora, reducing inconsistencies across studies.
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3. BOSPHORUSSIGN: TURKISH SIGN LANGUAGE

RECOGNITION CORPUS IN HEALTH AND FINANCE

DOMAINS

Sign language linguists have been studying Turkish Sign Language (Türk İşaret

Dili, TİD) in recent years by collecting large corpora and analyzing the aspects of

the language [48]. However, there are no domain-specific TİD corpora for health and

finance domains. In this thesis, we are presenting BosphorusSign, a Turkish Sign Lan-

guage corpus in health and finance domains, collected by using the Microsoft Kinect

v2 [15] sensor, that provides depth map, user mask, color video and human pose infor-

mation. BosphorusSign consists of signs and phrases from three domains: The first is

signs and phrases which would be used in a hospital or at a doctor’s appointment; the

second contains limited corpus in the finance domain and the third contains commonly

used signs in everyday life. The signs and phrases that compose the BosphorusSign was

chosen by consulting domain specialists, TİD linguists and native TİD users. We have

collected 859 sign and phrase samples from multiple signers: 487 samples belonging

to the health domain, 177 samples belonging to the finance domain and the remaining

195 samples comprising commonly used signs in everyday life. When completed, the

corpus will have at least six repetitions of each sign performed by 10 signers, giving a

wide variance to the data.

In order to streamline the recording procedure we have developed a recording

software which records all the provided modalities of the Microsoft Kinect v2 sensor

and allows online sign border annotation. In addition to the sign border annotations,

the corpus will include gloss annotations rendered by linguists, thus making this cor-

pus a valuable resource for sign language researchers both from the computer science

and linguistics community. The developed acquisition software and the collected sign

samples are currently available on the BosphorusSign website1 . When completed the

corpus will be accessible for academic purposes upon filling a license agreement.

1www.BosphorusSign.com
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Furthermore, a subset of this corpus was used to develop Hospisign, a human-

computer interaction platform that aims to assist the hearing impared in hospitals [54].

Further detail on HospiSign can be found in Chapter 4.

3.1. Recording Software and Setup

All of the recording sessions have been carried out in a controlled environment

where all the signers are facing the Microsoft Kinect v2 sensor from a distance of

1.5 meters, in front of a green background. Although the Microsoft Kinect v2 sensor

provides the user mask, the green background can be used for background subtraction

by the researchers who would like to use color videos as their single modality. The

recording setup can be seen in Figure 3.1 from the perspective of the signer and the

recording person (user).

Figure 3.1. Recording setup from the perspective of the user (Left) and the signer

(Right).

We have developed a data acquisition software for the Microsoft Kinect v2 sensor

that is both user and signer friendly while enabling streamlined recording. The soft-

ware was developed in the Visual Studio 2013 development environment using the C#

(WPF) programming language. Emgu CV and FFMPEG external libraries were used

for recording the color videos and for compressing them after each session.
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The developed software consists of two windows, as it can be seen in Figure 3.2,

one dedicated to the user while the other dedicated to the signer. At the beginning

of each session the user provides a script that contains the sign names and their video

samples. During the recording process the signer first sees a sign sample video playing

that is surrounded by an orange bordered window (Figure 3.2). After the sample video

finished playing, the user signals the signer to start performing the sign by clicking

the Start Sign button, turning the borders to green. After the sign is performed by

the signer, user clicks the Stop Sign button which turns the borders to gray, indicating

that the recording of this sample is completed by the signer. Then the user clicks the

Next Sign button, thus starting the recording procedure for the next sign in the given

script. This procedure enables online annotation of the sign borders in the recorded

sessions. In case of errors in performing the sign or timing of the online annotation,

the sample can be re-recorded using the Repeat and Invalid Sign buttons, which would

invalidate the previously annotated video segment.

The software records color video, depth map, user mask, body pose information

and sign border annotations, and saves them into a folder, which is named according to

the used script, the signer and the time of the recording session. In each session, signers

are presented and asked to perform 30 to 70 signs. These signs are randomly sampled

without replacement from the total set of signs. This makes each session unique by

randomizing the temporal ordering of signs and reducing the statistical significance of

the effects of co-articulation. At the end of each recording session, recorded Microsoft

Kinect v2 modalities (color video, depth map, user mask and pose information) and

sign border annotations are compressed and saved.

3.2. Annotation

There are two types of annotations provided by BosphorusSign: (1) The sign

border annotations of each session, that are mainly for SLR researchers, and (2) The

sign level annotations for each sign sample which will be available online for linguists

and sign language enthusiasts. Sign level tagging will include content tagging, glosses,

spoken language translations, lemmatization, parts of speech; such as classifier or buoy,
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and non-manual marking [55]. The corpus is annotated using ELAN [56], which enables

the search among the *.EAF files, according to the mentioned categories. The signs are

provided with Turkish and English glosses alongside Turkish and English translations.

The corpus consists not only of words but also compounds and phrases. Consid-

ering this, the signs are lemmatized in order to facilitate searches among all the tokens

in the corpus. Moreover, the ELAN files have tiers for mouth movements and other

non-manuals. If a sign has mouthing, then the mouthing is annotated. If the sign

has a mouth gesture, then the type of the gesture, such as puffed cheeks or tongue

protruding, is given in this tier. This piece of information is expected to depict the

differences among the signers.

In addition to the mouth tier, another non-manual tier is also given so that

researchers would be able to look through the tokens consisting of a specific non-

manual marker in the corpus. As a further step, the same motivation leads us to state

the parts of speech information because the signs in the corpus contain classifiers or

buoys, which can be crucial for future morphology research projects. The annotations

also mark the types of classifiers [57] or buoys [58] such as SASS (Size and Shape

Specifiers) or fragment buoy, respectively based on the studies in the literature. The

linguistic annotations will be available on BosphorusSign website as ELAN Files.

3.3. Distribution

The collected corpus will be available for download for academic purposes upon

filling a license agreement form on the BosphorusSign website. The provided data

will include the Microsoft Kinect v2 modalities (1080p color video, depth map, pose

information and user mask) and their sign border annotations.

In order to distribute the corpus we had to solve the file size issue. The Microsoft

Kinect v2 sensor provides high definition color videos, which occupy large disk spaces.

For example, an unprocessed one-minute long video has an approximate size of 12 GBs.

The recording software we have developed does lossless compression at the end of each
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session, thus shrinking the video’s size. Nonetheless, these compressed videos are still

not feasible for distribution as their sizes are approximately 5 GB/minute. In order

to solve this issue, while preserving the video quality, we have conducted experiments

using x264 compression algorithm and its parameters to lower the video size.

In the light of our experiments, we have chosen the lossy x264 parameters to be

23 for the Constant Rate Factor parameter and VerySlow for the preset parameter,

which dropped the video size from 5 GB/minute to 16 MB/minute, making the video

feasible to distribute while persevering the video quality (Mean pixel error rate of 2.7).

The provided data for each recording session, their formats and their mean sizes

can be seen in Table 3.1.

Table 3.1. Contents of BosphorusSign Corpus.

Modality File Type Resolution Content Mean Size

Color Video .MP4 Video File 960*1080 Pixels 24bpp Image Sequence 16 MB/minute

Depth Map .RAR Binary File 512*424 Pixels 16bpp Image Sequence 235 MB/minute

User Mask .RAR Binary File 512*424 Pixels 8bpp Binary Image Sequence 2 MB/minute

Pose Information .CSV File 25 Joints Joint Coordinates and Angles 6 MB/minute

Border Annotations .CSV File 30-70 Signs Sign Border Frames with Labels 5 KB/session
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4. HOSPISIGN: A HUMAN-COMPUTER INTERACTION

PLATFORM FOR THE HEARING IMPAIRED

In this chapter, we present HospiSign, a human computer interaction platform

that is designed to assist the hearing-impaired in a hospital environment, which rec-

ognizes sign language phrases in order to interpret Turkish Sign Language. HospiSign

proposes a possible solution to the communication problem between a Deaf patient

and a doctor. By asking questions as sign videos and suggesting possible answers on

a display, the system helps Deaf users to explain their problems. With the tree-based

activity diagram interaction scheme, the system only looks for the possible answers in

each level (step), instead of trying to recognize from all the signs in the dataset. At

the end of the interaction, the system prints out a summary of the interaction and the

users are guided to take this print out with their ID to the information desk, where

they can be assisted according to their needs.

The HospiSign platform consists of a personal computer (PC), a touch display

to visualize the sign questions and answers to the user, and a Microsoft Kinect v2

sensor. Since it is necessary to track the users’ hand motions in order to recognize the

performed signs, the Microsoft Kinect v2 sensor plays an essential role as it provides

accurate real-time human body pose information.

4.1. Interaction Design

While designing the interface, the focus were on two criteria: functionality and

usability. Therefore, the interaction scenarios were prepared based on the advice of the

the family medicine clinic doctors, TİD linguists and native TİD users.

On the visual design of the interface, the question sign video is placed at the top-

center of the screen to attract the user’s attention. Then, the answer sign videos are

displayed at the bottom of the screen with a smaller size than the size of the question
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sign video. A sample user interface of the HospiSign platform can be seen in Figure

4.1. Since there are some questions that have more then three answers, the timing

is adjusted for each question accordingly so that users would be able to view all the

answers.

Figure 4.1. The HospiSign Interface.

The HospiSign system follows three stages to move from one question to another

in the tree-based activity diagram interaction scheme: (1) display of the question; (2)

display of the possible answers to that question; and (3) the recognition of the answer

(sign). The user first watches the question displayed on the top-center of the screen;

then performs a sign from the list of possible answers displayed at the bottom of the

screen (See Figure 4.1); and then moves to the next question. This process is repeated

until the system gathers all the necessary information from the user. After the user

answers all the required questions, the system prints out a summary report to be given



21

to the information desk or the doctor at the hospital. This summary contains the

details of user’s interaction with HospiSign.

How can I help you?

 I am sick        "Is it a Emergency?"
 I would like to get
 some information 

What kind of 
information would 

you like to get?

 Yes 
"What is your 
complaint?"

 No 
"What is your 
complaint?"

 I have back pain 
 I have lumbar pain 

 I have a cough 
 I have throat swelling 

 I would like to have my shots done 
 I have insomnia 

 I have anger issues 
 I have a runny nose 

 I have menstruation irregularities 
 I would like to have my pills prescribed 

 I would like a have a blood test 
 I have constipation 

 I would like to have an urine test 
 I have diarrhea 

Please take the 
printed form and 

bring it to the 
Information desk 

with your ID.

 I am vomiting 
 I have trouble breathing 

 I feel dizzy 
 I have stomachache 
 I have tachycardia 
 I have chest pain 

 I fainted 
 I have headache 

 I have fever 

"Do you have an 
appointment"

 Yes, I have an appointment. 
 No, I don t have an appointment 

 I would like to learn more about the pricing 
 I am here to visit a patient 

 I would like to ask directions 
 I would like to learn more about

 your insurance policies 

A
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Answer Group #6
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Answer Group #2

Answer Group #1

Figure 4.2. Tree-based activity diagram of HospiSign.

To make classification task easier, the questions are placed into a tree-based ac-

tivity diagram in such a way that each question will lead to another sub-question with

respect to the answer selected by the user. With categorization of possible answers to

each question, it is intended to help the users to easily describe their illness or intention

of their visit. The proposed tree-based activity diagram can be seen in Figure 4.2.
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One of the most important advantages of using such a tree-based scheme is that

it makes the system more user-friendly and easy-to-interact. The tree-based activity

diagram interaction scheme also increases the recognition speed and performance of

the system as the task of recognizing a sign from possible answers to each question is

much easier and faster then recognizing a sign from the all possible answers. Exten-

sive experiments on the effectiveness of tree-based activity diagram can be found in

Chapter 6.
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5. PROPOSED SIGN LANGUAGE RECOGNITION

TECHNIQUES

Vision based sign language recognition methods generally consist of four main

modules: Human Pose Estimation, Feature Extraction, Feature Normalization, and

Temporal Modeling and Classification, as visualized in Figure 5.1. Taking this frame-

work as our baseline, we propose using various features, normalization approaches,

temporal modeling techniques and classification methods to represent and to recognize

isolated sign language instances.

Figure 5.1. Four main modules of our sign language recognition framework.

5.1. Human Pose Estimation

Most of the vision based sign language recognition methods use color cameras

as their means of capturing signs. However, human pose estimation in color videos is

a challenging task due to the color ambiguity between the user and the background.

Moreover, color images are highly effected by the illumination changes in the environ-

ment. With the emergence of depth sensors, researchers have moved towards using

depth cameras as an alternative means of capturing signs, as the depth sensors are

robust against lighting changes and provide depth information of the scene. Further-

more, depth information proved itself to be useful for human pose estimation as it

makes distinguishing users from background a trivial task. In recent years, Shotton et

al. proposed using depth pixel differences to estimate human poses in real-time, which

is incorporated in most of the depth sensors’ Software Development Kits (SDKs) [17].
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Taking these facts into consideration, we have collected our sign samples using

the Microsoft Kinect v2 sensor, as described in Chapter 3. By using the Microsoft

Kinect v2 SDK, we were able to capture color videos, depth maps, user masks and

body pose information of the signers. The body pose information consist of the world

coordinates, orientations, and pixel coordinates (in depth and color images) of the 25

joints, which are visualized in Figure 5.2.

 Upper Body Joints

 1 Head

 2 Neck

 3 Spine Shoulder

 4 Shoulder Left

 5 Elbow Right

 6 Wrist Right

 7 Hand Right

 10 Shoulder Left

 11 Elbow Left

 12 Wrist Left

 13 Hand Left

 16 Spine Mid

 17 Spine Base

 Other Joints

 8 Thumb Right

 9 Hand Tip Right

 14 Thumb Left

 15 Hand Tip Left

 18 Hip Right

 19 Knee Right

 20 Ankle Right

 21 Foot Right

 22 Hip Left

 23 Knee Left

 24 Ankle Left

 25 Foot Left

14

 

17

3

12

11

10

2

4

5

16

13

6

78

9 15

18

19

20
21

22

23

24
25

 1

Figure 5.2. 25 Joints that are provided by the Microsoft Kinect v2 SDK.
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Furthermore, we incorporated state-of-the-art facial landmark localization tech-

nique, Supervised Descent Method [1], to our human pose estimation module in order

to localize the hands more precisely with respect to the face. A sample of the detected

facial landmarks can be seen in Figure 5.3. Moreover, we have studied the appli-

cation of these facial landmark localization methods in depth images and obtained

state-of-the-art performance on frontal depth images, which is extensively explained in

Chapter 8.

Figure 5.3. Facial landmarks that are localized by using the Supervised Descent

Method [1].



26

5.2. Feature Extraction

As sign languages convey information through hand shape, upper body pose,

facial gestures and hand trajectories, sign language recognition techniques extract fea-

tures to represent each respective aspect of the signs. Taking the features proposed by

Kadir et al. [2] as baseline, we have extracted hand position (Baseline Hand Position)

and movement (Baseline Hand Movement) features from each video frame to repre-

sent our sign samples. In addition, we have extracted upper body pose (Normalized

World Coordinates, Normalized Pixel Coordinates, Upper Body Joint Orientations),

hand movement (Hand Joint Movement), and hand position (Hand Joint Distance)

features using the provided body pose information. To represent hand shapes, we seg-

mented the hand images using the signers’ skin color and depth maps and extracted

Histogram of Oriented Gradients [59] from the segmented hand patches for each frame.

A list of our features and the aspects they represent in a sign can be seen in Table 5.1.

Table 5.1. Extracted features that are used to represent signs.

Feature Name Represented Aspect

Baseline Hand Position Hand Position

Baseline Hand Movement Hand Movement

Normalized World Coordinates Upper Body Pose

Normalized Pixel Coordinates Upper Body Pose

Upper Body Joint Orientations Upper Body Pose

Hand Joint Distance Hand Position

Hand Movement Distance Hand Movement

Histogram of Oriented Gradients Hand Shape

5.2.1. Baseline Hand Position and Baseline Hand Movement Features

Kadir et al. [2] proposed hand position and hand movement features in order

to achieve high sign language recognition performance using low number of training

instances. Their features consists of two parts that are, hand positions and hand
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movements, that are listed in Table 5.2 and Table 5.3 respectively. Hand movement and

hand position features are extracted using the joint coordinates, that are provided by

the Microsoft Kinect v2 sensor, and the facial landmark locations, which are extracted

by using Supervised Descent Method [1].

Table 5.2. Baseline hand position features proposed by Kadir et al. [2].

Feature Name Type Length

Right Hand Raised Binary 1

Left Hand Raised Binary 1

Both Hands Raised Binary 1

Hands are Together Binary 1

Hands are Crossed Binary 1

Closest Body Part Categorical 12 x 2 (For both hands)

Table 5.3. Baseline hand movement features proposed by Kadir et al. [2].

Feature Name Type Length

Hands Move Apart Binary 1

Hands Move Closer Binary 1

Hands Move in Unison Binary 1

Movement Direction Categorical 4 x 2 (For both hands)

There are two types of features that are proposed by Kadir et al. [2]. First type

is binary features, which are set to 1 if the requirement for the features are fulfilled.

The second type is categorical features, in which only one of the possible categories of

the features can be set in each frame. To be able to use categorical features in machine

learning methods that measure euclidean distance, categorical features are represented

with binary arrays with the length equal to the number of categories. When a category

is set for a given frame, the respective binary value of that category is set to one while

the rest is set to zero.
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There are two categorical features: Closest Body Part (Hand Position) and Move-

ment Direction (Hand Movement). Closest Body Part feature represents the closest

body part to both of the hands. The body parts that are taken into consideration

are: Face, Chin, Nose, Cheeks, Neck, Shoulders, Chest, Stomach and Hips. Movement

Direction represents the movement direction of the hands. To extract the Movement

Directions, world coordinates of the hand joints belonging to adjacent frames are used.

The direction categories are: Up, Down, Left and Right.

5.2.2. Upper Body Pose Features

As upper body pose features, we used world coordinates (Normalized World Co-

ordinates) , pixel coordinates (Normalized Pixel Coordinates), and orientations (Upper

Body Joint Orientations) of the 12 upper body joints that are are visualized in Fig-

ure 5.2. We use the joint orientations as is. However, we normalize the world and pixel

coordinates of the joints, to remove their user dependent location and scale factors. In

order to normalize the coordinates in location, we move the SpineBase of all frames

to the origin by subtracting its coordinate values from all the other joints’ coordinate

values. To normalize the coordinates in scale, we divide each coordinate by the height

of the person, which is inferred by calculating the distance between the SpineCenter

and the SpineBase in the y axis.

5.2.3. Hand Joint Distances

Using the 12 upper body joints that are visualized in Figure 5.2, we extracted the

Hand Joint Distance feature, by calculating each joint’s euclidean distance from the

hand joints. Then each distance is divided by the sum of all the distances, by which we

normalize the feature in scale while creating a discrimination between different body

poses (as sum of the distances vary from one pose to another).
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5.2.4. Hand Joint Movements

We extract the Hand Joint Movement feature by subtracting world coordinates of

hand joints belonging to adjacent frames. The distance is then normalized in scale by

being divided by the height of the person, which is inferred by calculating the distance

between the SpineCenter and the SpineBase in the y axis.

5.2.5. Hand Shape Features

Hand shape is a crucial feature for sign language recognition as some signs have

the same hand movement and body posture while hand shape is the only differentiating

characteristic. Therefore, we used Histogram of Oriented Gradients (HOG) [59], that

is commonly used to represent hand shapes in sign language recognition and hand

gesture recognition applications [27].

Using the pixel coordinates provided by the Microsoft Kinect v2 sensor, we crop

a 160x160 pixels patch around the hand. The size of the patch is chosen to be large, in

order to make sure that the hands are fully in the cropped patches. Using an adaptive

skin color model, we segment the skin colored regions in the patch. Finally, using

the depth information, we omit any region that lies 20 cm behind the hand joint,

giving us the segmented hand region. We proposed using three parameter setups while

extracting Histogram of Oriented Gradients that are: High Detailed HOG (HOG-H),

Medium Detailed HOG (HOG-M) and Low Detailed HOG (HOG-L), that are visualized

in Figure 5.4. The parameters and feature sizes of all the three setups can be seen in

Table 5.4.

5.2.5.1. Histogram of Oriented Gradients (HOG). First proposed by Dalal et al. [59]

for human detection, HOG is a spatial descriptor that uses pixel gradient information.

HOGs are extracted by dividing a given image into cells and calculating gradients of

the pixels in each cell. Then, histograms of gradients are calculated from blocks of cells.

Lastly, all histograms are normalized and concatenated to form the HOG descriptors.
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Table 5.4. Proposed Histogram of Oriented Gradients parameter setups.

Parameters HOG-L HOG-M HOG-H

Cell Size 80x80 40x40 20x20

Block Size 1x1 2x2 4x4

Feature Size 18 108 432

Figure 5.4. Segmented hands and extracted Histogram of Oriented Gradients with

different parameter setups. Top Left: Segmented Hands, Top Right: HOG-H, Bottom

Left: HOG-M, Bottom Right: HOG-L.
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5.3. Feature Normalization

As different features come from different distribution, they require normalization

before being used in temporal modeling and machine learning methods, which calculate

euclidean distance to measure similarities. In order the normalize our features, we

propose using three normalization strategies that are applying Principle Component

Analysis (PCA) [60], applying Z-Normalization [61], and applying PCA that is followed

by Z-Normalization.

We apply PCA to each group of features separately, as their scales might be

different, which would cause PCA to choose the directions in which the scale is the

most instead of the direction with the highest variance. Z-Normalization is applied to

each feature in order to represent all the features in the standard score.

In addition to the three normalization strategies, while using Dynamic Time

Warping, we give weights to each feature that are inversely proportional to their feature

lengths, in order to make each feature equally effective on the measured distance.

5.4. Temporal Modeling and Classification

Same as all the natural languages, sign languages are series of utterances that are

used in sequences to convey information. Therefore, temporal modeling is an essential

step for sign language recognition, as any change in the arrangement of signs or its

subunits may change the meaning of the sign sequence.

Commonly used temporal modeling techniques in Sign Language Recognition are

Hidden Markov Models (HMMs) [6] and Dynamic Time Warping (DTW) [7]. While

Hidden Markov Models are statistical models that are explicitly developed to model

time series, Dynamic Time Warping is an algorithm to measure similarity between two

time series that can vary in time and speed. Another approach for temporal modeling is

to create Temporal Templates (TT) using the smallest time units (in our case the frames

of the videos). We propose using Dynamic Time Warping and Temporal Templates to
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model the temporal aspect of the sign sequences. For classification, we propose using k-

Nearest Neighbors for Dynamic Time Warping based temporal modeling and Random

Decision Forests [62] for Temporal Template based temporal modeling approaches.

In addition, we have conducted experiments using Hidden Markov Models [6] to

evaluate the applicability of transfer learning methods for gesture recognition which is

extensively explained in Section 7.

5.4.1. Temporal Templates based Random Decision Forests

Due to their lack of temporal mechanisms, spatial machine learning methods like

Support Vector Machines and Random Decision Forests, are not suitable for recognizing

time series, such as sign language sequences. In order to use powerful spatial classifiers

for classifying time series, spatial features of each time step are concatenated with its

neighboring steps, thus representing each step by a temporal window of features. In

our framework, this is achieved through Temporal Templates (TT) that represent each

frame with the concatenated features of its neighbors.

In template based temporal modeling, increasing template size enhances tem-

poral representation. However, memory and computational power restrictions of de-

velopment systems limit the feature vector size. To overcome this limitation, frame

selection methods for creating templates can be altered. We propose selecting frames

in intervals, in order to be able to represent larger temporal windows while using the

same number of frames.

We classify the constructed temporal templates of each frame by using Random

Decision Forests (RDFs). RDF is a supervised classification and regression technique

that has become widely used due to its efficiency and simplicity. RDFs are an ensemble

of random decision trees (RDT) [62]. Each tree is trained on a randomly sampled subset

of the training data. This reduces over-fitting in comparison to training RDTs on the

entire dataset; therefore increasing stability and accuracy.
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During training, a tree learns to split the original problem into smaller ones. At

each non-leaf node, tests are generated through randomly selected subsets of features

and thresholds. The tests are scored using the decrease in entropy, and best splits are

chosen, and used for each node [62]. Each tree ends with leaf nodes, that represent the

probabilities of a given data to belong to the possible classes.

Classification of a frame is performed by starting at the root node and assigning

the frame either to the left or to the right child recursively until a leaf node is reached.

Majority voting is used on prediction of all decision trees to decide on the final class of

the frame. Finally, signs are classified by taking the mode of its frames’ classification

results.

5.4.2. Dynamic Time Warping and k-Nearest Neighbors

Dynamic Time Warping (DTW) is a popular tool for finding the optimal align-

ment between two time series. The DTW algorithm calculates the distance between

each possible pair of points out of the two series in terms of their spatial and temporal

features.

DTW uses these distances to calculate a cumulative distance matrix and finds

the least expensive path through this matrix using dynamic programming. This path

represents the ideal synchronization of the two series with the minimal feature distance.

Usually, the samples are normalized to zero mean and smoothed with median filtering

before distance calculation. k-Nearest Neighbors algorithm is widely used in classifying

time series that are modeled by Dynamic Time Warping and often achieve state-of-the

art performance, in which the mode of the class labels belonging to the samples which

have the least distance is chosen as the classification result.
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6. EXPERIMENTS AND RESULTS

We examined the performance of our methods in terms of the features, temporal

modeling techniques and classification approaches. First, we conducted experiments to

find the optimum parameters for Histogram of Oriented Gradients, which we used to

represent our hand shapes. Then using the optimum HOG parameters we conducted

experiments in order to find the combination of features that yields the highest recog-

nition performance. In both of the feature selection experiments, we used all the three

proposed normalization setups, and Dynamic Time Warping (DTW) to measure the

distance between isolated sign phrases. Then we use k-Nearest Neighbors (k-NN) algo-

rithm to classify the isolated signs by taking the mode if its k nearest neighbors’ class

labels.

Using the best performing feature combination and the normalization setup, we

conduct experiments in order to find the optimum window size and interval steps for the

Temporal Templates (TT). We classify the temporal templates using Random Decision

Forest (RDF) that contains 100 trees. Then we compare the performance of DTW and

TT based approaches.

Finally, we conclude our performance evaluation by conducting experiments using

the proposed tree-based activity diagram, by which the recognition task is divided into

six subtasks and handled separately. Each subtask aims to recognize the signs that

are in its respective answer group, which can be seen in Figure 4.2. Best performing

features, normalization and temporal template setups are used in these experiments.

All of our experiments were conducted on a subset of the BosphorusSign corpus,

which is used in the development of HospiSign. The subset contains 662 sign phrase

samples belonging to 33 phrase classes which are performed by three native TİD users in

six to eight repetitions. In order to obtain user independent results we performed leave-

one-user-out cross-validation and report the mean and standard deviation of recognition

performance in all of our experiments.
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6.1. Histogram of Oriented Gradients Parameter Optimization

In this experiment setup, we find the optimum Histogram of Oriented Gradients

(HOG) parameters to represent the hand shapes in isolated sign phrases. We use three

HOG parameter setups that are Low Detailed (HOG-L, Cell Size: [80x80] Block Size:

[1x1]), Medium Detailed (HOG-M, Cell Size: [40x40] Block Size: [2x2]), High Detailed

(HOG-H, Cell Size: [20x20] Block Size: [4x4]). Examples of all the three parameter

setups can be seen in Figure 6.1.

HOG-L HOG-M HOG-H

Figure 6.1. HOG Parameter Setups. From left to right: Low Detailed HOG

(HOG-L), Medium Detailed HOG (HOG-M), High Detailed HOG (HOG-H).

We apply all the three normalization methods on the HOG features. The tem-

poral aspects of the signs were modeled using Dynamic Time Warping and k-Nearest

Neighbors algorithm was used to classify signs. The experiments were conducted on

a subset of BosphorusSign, which contains 662 samples of 33 sign classes belonging to

three native TİD users. All of the experiments were conducted by doing leave-one-user-

out cross-validation, and we report the mean and standard devation of each parameter

and normalization setup in Table 6.1.

As it can be seen from Table 6.1, HOG-M performs the best while normalized

using PCA. Taking this into consideration, in the rest of our experiments we used

HOG-M as our hand shape representation.
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Table 6.1. Histogram of Oriented Gradients parameter optimization results.

Normalization Setup HOG-L HOG-M HOG-H

No Normalization 52.48± 11.13 81.15± 6.02 78.16± 13.03

PCA 51.85± 10.80 81.78± 5.69 78.79± 12.71

Z-Norm 50.26± 10.11 79.56± 5.77 65.85± 17.72

PCA + Z-Norm 28.61± 8.02 22.52± 9.83 11.57± 6.64

6.2. Comparing and Combining Features

Using the best performing HOG parameter setup (HOG-M), we conducted exper-

iments in order to find the best feature combination from the eight proposed features.

A list of these features and the sign modalities they represent can be seen in Table 6.2.

Table 6.2. Eight features and the modalities they represent in a sign.

ID Feature Type Modality

FT1 HOG-M (C:40x40; B:2x2) Hand Shape

FT2 Baseline Hand Movement Hand Movement

FT3 Baseline Hand Position Hand Position

FT4 Hand Movement Distance Hand Movement

FT5 Hand Joint Distance Hand Position

FT6 Normalized World Coordinates Upper Body Posture

FT7 Normalized Pixel Coordinates Upper Body Posture

FT8 Upper Body Joint Orientations Upper Body Posture

To find the best combination of features, we first find the four features that yield

the highest recognition performance. We apply all the three normalization setups on all

of the features and model their temporal aspects using Dynamic Time Warping. The

classification is done using the k-Nearest Neighbors algorithm. The experiments were

conducted on the BosphorusSign subset, which contains 662 sign samples belonging to
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33 sign classes that are performed by three native TİD users. All of the experiments

were conducted by doing leave-one-user-out cross-validation, and we report the mean

and standard deviation of each parameter and normalization setup in Table 6.3

Table 6.3. Performance evaluation of all the nine features.

ID Raw Data PCA Z-Norm PCA + Z-Norm

FT1 81.15 ± 6.02 81.78 ± 5.69 79.56 ± 5.77 22.52 ± 9.83

FT2 69.20 ± 9.70 69.03 ± 9.64 69.12 ± 9.91 67.86 ± 9.44

FT3 73.15 ± 4.26 72.98 ± 5.55 3.02 ± 0.01 71.00 ± 5.22

FT4 85.19 ± 0.30 85.19 ± 0.30 83.59 ± 1.97 82.80 ± 2.75

FT5 94.46 ± 0.51 93.87 ± 0.64 93.62 ± 2.05 91.90 ± 0.55

FT6 91.57 ± 2.51 91.02 ± 1.90 45.86 ± 18.80 77.12 ± 7.07

FT7 92.99 ± 0.95 92.57 ± 1.05 47.75 ± 12.90 87.12 ± 3.21

FT8 33.98 ± 5.12 33.98 ± 5.61 3.02 ± 0.01 39.81 ± 9.51

As it can be seen from Table 6.3, Hand Movement Distance (FT4), Hand Joint

Distance (FT5), Normalized World Coordinates (FT6) and Normalized Pixel Coordi-

nates (FT7) generally yield the four highest recognition performances. To find the best

combination of features, we conducted experiments using the combination of these four

features using the same experiment setup. We report the results of our experiments in

Table 6.4.

As it can be seen in Table 6.4, combining Hand Joint Distances with Hand Move-

ment Distances, and normalizing them using Principle Component Analysis yields the

highest recognition performance. Therefore, for the rest of our experiments, we used

this combination of features and normalization setup while evaluating other aspects of

our proposed system.
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Table 6.4. Performance evaluation of feature combinations. (FT4: Hand Movement

Distance, FT5: Hand Joint Distance, FT6: Normalized World Coordinates, FT7:

Normalized Pixel Coordinates)

Combinations Raw Data PCA Z-Norm PCA + Z-Norm

FT4 85.19 ± 0.30 85.19 ± 0.30 83.59 ± 1.97 82.80 ± 2.75

FT5 94.46 ± 0.51 93.87 ± 0.64 93.62 ± 2.05 91.90 ± 0.55

FT6 91.57 ± 2.51 91.02 ± 1.90 45.86 ± 18.80 77.12 ± 7.07

FT7 92.99 ± 0.95 92.57 ± 1.05 47.75 ± 12.90 87.12 ± 3.21

FT4 + FT5 94.84 ± 1.87 96.72 ± 2.92 92.70 ± 1.12 92.24 ± 0.83

FT4 + FT6 93.03 ± 3.16 92.07 ± 3.28 71.04 ± 9.37 82.92 ± 1.42

FT4 + FT7 93.11 ± 2.55 93.58 ± 1.02 76.75 ± 1.37 89.55 ± 1.06

FT5 + FT6 92.83 ± 2.63 92.74 ± 2.96 79.89 ± 10.87 90.34 ± 5.20

FT5 + FT7 94.00 ± 0.45 93.20 ± 0.27 86.32 ± 3.66 92.07 ± 2.20

FT6 + FT7 93.24 ± 0.98 93.28 ± 1.18 47.32 ± 19.17 87.91 ± 1.33

FT4 + FT5 + FT6 93.66 ± 2.85 93.41 ± 3.56 84.17 ± 7.03 91.10 ± 2.60

FT4 + FT5 + FT7 95.26 ± 1.98 94.04 ± 0.64 87.20 ± 2.31 92.86 ± 1.69

FT4 + FT6 + FT7 94.04 ± 2.44 93.58 ± 1.44 66.30 ± 9.29 89.51 ± 0.63

FT5 + FT6 + FT7 93.24 ± 0.99 93.41 ± 1.30 76.41 ± 10.62 91.69 ± 2.63

All Features 94.50 ± 2.09 94.16 ± 1.51 81.07 ± 5.98 92.19 ± 2.24
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6.3. Optimizing Temporal Template Size and Interval Steps

Using the best performing feature combination (Hand Joint Distance and Hand

Movement Distance) and the normalization setup (Principle Component Analysis) we

conducted experiments in order to find the optimum temporal template size and in-

terval steps. We did a grid search for parameter optimization in which we searched

templates size from {9, 11, 13, 15, 17, 21} and interval steps from {1, 2, 3, 5}. The con-

structed temporal templates of each frame was classified using Random Decision Forests.

The classes of the isolated signs are assigned as the mode of class labels of its frames.

Table 6.5. Temporal Template Size and Interval Steps optimization results. TS:

Template Size, IS: Interval Steps.

IS: 1 IS: 2 IS: 3 IS: 5

TS: 9 72.44 ± 17.68 82.09 ± 12.29 88.38 ± 6.72 92.74 ± 3.88

TS: 11 74.87 ± 16.54 86.15 ± 8.52 89.72 ± 5.16 94.21 ± 2.23

TS: 13 77.47 ± 16.77 88.30 ± 8.50 91.61 ± 5.81 95.55 ± 2.05

TS: 15 79.61 ± 15.68 88.55 ± 5.45 93.08 ± 2.93 95.80 ± 1.62

TS: 17 79.95 ± 14.67 89.68 ± 6.23 93.20 ± 3.92 95.93 ± 1.57

TS: 19 82.97 ± 10.77 90.90 ± 4.87 94.55 ± 2.52 94.97 ± 2.18

TS: 21 84.85 ± 10.17 91.82 ± 3.70 94.92 ± 1.88 95.35 ± 2.02

TS: 23 85.82 ± 10.61 92.83 ± 4.57 95.68 ± 1.96 95.51 ± 2.78

As it can be seen in Table 6.5 the recognition performance increases as the repre-

sented temporal window gets larger. However, the recognition performance converges

near 95%. The highest recognition performance is obtained by using 17 frames to

construct temporal templates while taking every fifth frame.
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6.4. Comparing the Temporal Modeling and Classification Methods

Using the best performing feature setups, we conducted experiments in order to

evaluate and compare the performance of temporal modeling and classification meth-

ods. For Dynamic Time Warping (DTW) based classification, we have optimized the

k values of the k-Nearest Neighbors (k-NN) algorithm. For Temporal Template (TT)

based Random Decision Forest (RDF) classifiers, we used template size and interval

steps that we have found to be optimum in our previous experiments. The experi-

ments were conducted on 662 sign samples of 33 sign classes belonging to three native

TİD users. Leave-one-out cross-validation was done for both of the experiments se-

tups. As it can be seen from Table 6.6, DTW based approach performs slightly better

than the TT based approach. Further comparison of the methods can be seen in the

experiments, in which we evaluate the effectiveness of the tree-based activity diagram.

Table 6.6. Comparison of the temporal modeling and classification methods.

Temporal Modeling Method Recognition Performance

DTW + k-NN 96.72± 2.92

TT + RDF 95.93± 1.57

6.5. Effectiveness of Tree-based Activity Diagram

Using the best performing feature and normalization setups, we evaluate the

effectiveness of using the tree-based activity diagram, which is explained in detail in

Chapter 4. We use both of the temporal modeling and classification approaches and

report our experiment results in Table 6.7.

As it can be seen from Table 6.7, using the tree-based activity diagram increases

the recognition performance. Furthermore, as the recognition task is divided into

subtasks, the best performing temporal modeling and classification methods can be

chosen for each answer group and combined in order achieve higher recognition rates

(See Combined column in Table 6.7).
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Table 6.7. Evaluation of using the tree-based activity diagram. (nClasses: Number of

classes)

Setup nClasses DTW + k-NN TT + RDF Combined

w/o Activity Diagram 33 96.75± 2.92 95.63± 1.57 N/A

Answer Group 1 2 100± 0 100± 0 100± 0

Answer Group 2 2 100± 0 100± 0 100± 0

Answer Group 3 9 98.77± 2.14 100± 0 100± 0

Answer Group 4 14 96.15± 3.95 94.46± 4.52 96.15± 3.95

Answer Group 5 4 98.96± 1.80 94.10± 5.14 98.96± 1.80

Answer Group 6 2 100± 0 100± 0 100± 0
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7. DOMAIN ADAPTATION FOR GESTURE

RECOGNITION

The performance of gesture and sign language recognition systems heavily depend

on the data that have been used while training the system. Difficulties in data collec-

tion and annotation, quality of the collected data and the inconsistencies of the data

collected from different users and environments make it difficult to develop systems

that can recognize gestures or signs from large vocabularies in an user and environ-

ment independent manner [5]. In recent years the use of Transfer Learning (Domain

Adaptation) methods is proposed as a possible solution to this problem [63].

Transfer Learning methods use information from different domains that are sim-

ilar to each other to improve the performance of machine learning methods in the

domain in which the recognition is being done [64]. In transfer learning, the domains

are grouped with respect to the direction of the information transfer. The domain from

which the information is being transferred is called the Source Domain (DS), while the

domain to which the information is being transferred is called the Target Domain (DT ).

A transfer learning method’s success is evaluated by comparing recognition per-

formances of the systems that are trained with different proportions of the available

target domain data. There are three criteria that a transfer learning method has to

meet in order to be successful while being compared with a system that only uses tar-

get domain data. These criteria are: Having higher accuracy while using a small or no

proportion of target domain data in training (Higher Start); Increasing the system’s

performance faster while the proportion of target domain data that is used in training

is increased (Higher Slope); Having higher performance when all the target domain

data is used in training (Higher Asymptote). These three criteria are being visualized

in Figure 7.1.

The effect of transfer learning methods on performance is heavily dependent on
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Figure 7.1. Three criteria for a successful transfer learning application.

the choice of the domains. If the transfer is done between irrelevant domains, the

recognition performance may not improve or even get worse, which is called Negative

Transfer. In order to avoid negative transfers, transfer must be done between similar

domains.

Although transfer learning methods have proven to be successful in the related

field of activity recognition [65] and suggested to be used for improving sign language

and gesture recognition systems [63] there are very few studies conducted on this topic.

Farhadi et al. proposed transferring word models that are learned on avatar data to

new domain of human signers [66]. In their study, they use a set of shared words that

are labeled in both the avatar and the human datasets and a set of target words that

are only labeled in the avatar datasets. They build discriminative feature spaces from

common projections obtained from shared words and use these spaces to build word

classifiers for human signers by only using avatar datasets. In a more recent study,

Venkatesan examined boosting based transfer learning methods for gesture recognition

using accelerometer data, and report improvements [67].
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In order to evaluate the applicability of transfer learning methods to the ges-

ture and sign language recognition problems, we proposed using a domain adaptation

method, namely Frustratingly Easy Domain Adaptation [3], and conducted experi-

ments on transferring information from hand written digits to the hand drawn digit

gesture recognition domain [68]. For modeling the gestures we used Hidden Markov

Models [6], which is widely used in the sign language [5] and gesture recognition [69,70]

fields.

7.1. Frustratingly Easy Domain Adaptation

In a transfer learning problem, data coming from similar domains are expected to

have similar features. However, as samples from different domains come from different

distributions, classical machine learning algorithms lack the ability to discriminate

between classes that have samples from different domains and require preprocessing

of the samples. In order to solve this problem, Daumé III [3] proposed an easy to

implement feature augmentation method for adapting samples from different domains.

Let the samples from source and target domain, DS and DT , have the features fS

and fT that lie in the S = RF space. A new augmented input space S̆ = R3F is defined.

Then mapping functions ΨS and ΨT are defined for each domain to map samples from

the space S to the new space S̆. These mapping functions are as following:

ΨS(fS) =< fS, fS,0 >, ΨT (fT ) =< fT ,0, fT > . (7.1)

The 0 are zero vectors in the space S = RF . By mapping the samples from different

domains to this new augmented space using the respective mapping functions, the

source and target domain samples that belong to different classes become linearly

separable. Furthermore, samples from the target domain are weighted more, as these

samples will have less distance to a given test sample that comes from the target

domain.
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7.2. Quantization of Coordinates to Trajectories

In order to apply the Frustratingly Easy Domain Adaptation to our problem of

gesture recognition, we represent our samples as series of trajectories by quantizing the

directions between consequent coordinate points. In both of the domains, samples are

represented as time series of coordinate points. However, hand drawn digit gestures

lie in 3D space while hand written digits lie in 2D space. The first thing we do is to

take the projection of gestures from the 3D space to the 2D space by omitting the z

coordinates, in order to have both domains’ samples in the same space.

Although it is possible to use the 2D coordinate information for the feature aug-

mentation method, the coordinates need normalization in size and space. Therefore we

first interpolate each sample to have the same number of coordinate points and then

using these resampled coordinates, we create trajectory representations. The trajectory

representations are obtained by quantizing the movement direction between sequential

coordinate points. The possible direction angles (360 degrees) are segmented into eight

45 degree segments. Instead of starting the segments from 0 degrees, we give an offset

of 22.5 degrees to each segment, in order the trajectories to have more natural move-

ment directions (i.e. Trajectory Up having the -22.5–22.5 degree segment) as it can be

seen in Figure 7.2.

After each sample is converted into a series of trajectories, we apply the Frus-

tratingly Easy Domain Adaptation and transform each sample into a series of domain

adapted vectors. Finally, these vectors are used to train Hidden Markov Models [6] for

each digit which will be used for gesture recognition.

7.3. Experiments

In order to evaluate the applicability of domain adaptation to the gesture recog-

nition problem we applied the Frustratingly Easy Domain Adaptation method [3], to

a gesture recognition problem. We propose using hand written digits as source domain

and transfer the information to the target domain, which is hand drawn digit gestures.
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Figure 7.2. Quantized segments and a trajectory sample with the angle θ that

belongs to the 2nd segment.

Both domains have coordinates as common features. Therefore, they are both repre-

sented by the trajectories that are calculated from consequent coordinates. To model

these trajectories through time we used Hidden Markov Models. As the input space

of our HMMs are domain adapted trajectory vectors, we used Mixture Models (more

specifically Gaussian Mixture Models, assuming our samples to come from a normal

distribution) to represent the observations. We used the HMM implementations of

Bayesian Network Toolbox [71] in all of our experiments.

7.3.1. Dataset

In our experiments we used two datasets that represent the source and the target

domains. The target domain dataset is collected by Keskin et al. [72], in which the users

draw digits in mid air. The dataset was recorded by using the Microsoft Kinect [15]

sensor and the 3D coordinates of user’s joints are given for each frame. The dataset

consist of 13 users, including both left and right handed users, who repeat each digit

10 times. Hand drawn digit gesture coordinate samples can be seen in Figure 7.3.
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Figure 7.3. Coordinate samples from the hand drawn digit gesture dataset that is the

target domain.

As the source domain dataset we used the Chars74k dataset that is collected by

Campos et al. [73]. It consists of 55 samples of each hand drawn digit and provides 2D

coordinate series of each sample. Hand written digit coordinate samples can be seen

in Figure 7.4.

In order to have the source and the target domain samples in the same coordinate

space, we took the projection of the 3D coordinates of hand gesture coordinates to the

2D coordinate space.

7.3.2. Experiment Setup

With the purpose of examining the effects of the domain adaptation to the recog-

nition performance we have designed four experiment setups that have different training

datasets.

Only the Target Domain Data (TT ): In this setup we have only used the target

domain samples for training. All of the users’ samples are randomly split into two
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Figure 7.4. Coordinate samples from the hand written digit dataset (Chars74k) that

is the source domain.

groups, 60% of the samples are used for training and the remaining 40% is used for

testing.

Only the Source Domain Data (TS): In this setup we have only used source do-

main samples for training HMMs. All of the target domain samples are used for testing.

Combined Target and Source Domain Data (TCTS): In this setup the target do-

main samples are split in the same manner as in the TT and same proportions of

samples are used for training and testing. In addition to the target data all of the

source domain samples are used for training the HMMs.

Domain Adapted Target and Source Domain Data (TDATS): In this setup we use

the same sample setup as in TCTS for traning HMMs. However, before combining

target and source domain samples we apply feature augmentation to the samples.

For all of the experiment setups we have optimized HMM parameters using grid

search. The search spaces for each parameter is as following: Number of States

N = {1, 2, 3, 4, ..., 25}; Resampled Observation Length OL = {20, 30, 50}; Number

of Mixtures M = {1, 2, 3, 5, 7, 9, 11, 13}.
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Since the target samples are split randomly, we repeat each experiment that use

target data for training five times and report the mean and standard deviation of the

recognition performance. Furthermore, in order to eliminate the effects of user specific

gesture patterns we do leave-one-user-out cross-validation in the experiment setups

that use target domain data for training.

Finally, to examine the transfer learning method’s success we incrementally add

the target data into training and look for the three criteria that are visualized in

Figure 7.1.

7.3.3. Results and Discussion

Using the experiment setups that are defined in Section 7.3.2, we report the

mean and standard deviation results of hand drawn digit gesture recognition. In the

experiments, the percentage of target domain data is incremented iteratively in order

to examine its effect to the recognition performance. The results of our experiments

can be seen in Table 7.1.

Table 7.1. Performance evaluation of domain adaptation.

%Target TDATS TCTS TT TS

16,6 % 40,23 ± 7,7 47,19 ± 8,0 42,19 ± 6,6 37,17 ± 5,1

33,3 % 49,54 ± 6,3 53,92 ± 6,3 50,77 ± 6,0 37,17 ± 5,1

50,0 % 56,92 ± 5,9 57,81 ± 7,4 54,65 ± 5,7 37,17 ± 5,1

66,6 % 60,58 ± 7,4 62,58 ± 5,4 61,73 ± 7,4 37,17 ± 5,1

83,3 % 65,38 ± 4,8 63,58 ± 5,7 64,65 ± 5,4 37,17 ± 5,1

100 % 68,62 ± 5,2 67,18 ± 4,8 66,96 ± 4,7 37,17 ± 5,1

It can be seen from our experiment results that the performance of domain adap-

tation (TDATS) increases as larger proportions of the target domain data used in the

training. Furthermore, domain adapted setup has the highest recognition performance

when all of the target domain data is used for training. However, the domain adapta-
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tion’s performance is suppressed by two other setups (TCTS and TT ) while low propor-

tions of target domain data is used for training. This loss of improvement in recognition

is an indication of negative transfer, meaning that there are inconsistencies between

class samples from different domains.

Considering the fact that users were allowed to lift their hands while performing

hand written digits, we omit digits that are affected by the domain specific features.

Therefore, we choose the digits {2, 3, 4, 6} and repeated our experiments. The results

of the experiments with this subset of digits can be seen in Table 7.2.

Table 7.2. Performance evaluation of domain adaptation after removing the classes

that cause negative transfer.

%Target TDATS TCTS TT TS

16,6 % 44,23 48,65 47,02 26,00

33,3 % 62,31 58,17 58,94 26,00

50,0 % 67,60 63,75 63,65 26,00

66,6 % 74,71 73,65 71,44 26,00

83,3 % 78,08 75,29 71,06 26,00

100 % 80,87 78,85 74,04 26,00

As expected, using the domain adaptation (TDATS) improved the recognition

performance over using the combined samples (TCTS) and only using the target domain

samples (TT ). As it can be seen in Table 7.2, the application of domain adaptation

meets at least two of the criteria of a successful transfer learning application, that are

Higher Slope and Higher Asypmtote.
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8. FACIAL LANDMARK LOCALIZATION IN DEPTH

IMAGES

Landmark localization is a crucial initial step for face processing applications.

Such applications include but are not limited to biometrics [74], facial expression anal-

ysis [75], age estimation [76] and sign language recognition [77]. In biometrics applica-

tions, the localized landmarks are used to align faces before matching or to extract local

features. On the other hand, in facial expression analysis and sign language recogni-

tion, the landmarks are tracked through time to extract features in the spatio-temporal

domain. For all these different applications a better landmark localization results in a

better performance of the overall system. Most of the systems use 2D images since 2D

images are easy to acquire using commonly available video cameras. However, 2D face

images are vulnerable to illumination and pose changes. The availability of inexpensive

depth cameras has led to the widespread use of 3D face images, which overcome these

difficulties. Therefore, the development of a reliable 3D facial landmark localization

method has become essential.

Facial landmark localization methods generally utilize heuristic approaches as well

as statistical methods. Heuristics rely on unique properties of the facial landmarks on

the face: For example, the nose tip resides on the symmetry axis of the face and can

be localized using the shape properties. Similarly, the corners of the eye and mouth

can easily and successfully be localized by heuristics using shape properties. Such an

example to these methods is [74] in which Alyüz et al. propose a heuristic method

which uses curvature information, symmetry axis and shape index to locate the nose

tip, the nose and the eye corners in 3D faces.

Statistical 3D landmark localization methods also exploit the features of facial

landmarks such as local texture and shape. Unlike heuristic-based approaches which

require a unique rule for each landmark, statistical methods utilize feature statistics in a

uniform approach for all landmarks. Most recent statistical methods also use the shape
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information that is extracted by using facial landmarks relative positions. Creusot et

al. [78] propose a statistical facial landmark localization method utilizing shape infor-

mation in addition to the local features of landmarks. Several candidates are identified

on a local 3D mesh and the most probable candidate is identified through shape anal-

ysis. Another statistically motivated method using shape information proposed by

Sukno et al. [79] localizes facial landmarks under occlusion and expression changes.

In [79], the shape context of facial landmarks is used together with local feature analy-

sis. Different subsets of candidate points are evaluated, resulting in robustness against

missing landmarks due to occlusions. A similar concept for estimating occluded 3D

landmarks is also proposed in [80], where partial Gappy Principal Component Analysis

is used to restore missing landmark coordinates. In another study, Farrelli et al. [81]

proposed a Random Decision Forest based framework in which patches extracted from

depth images cast votes to localize facial landmarks.

Supervised Descent Method (SDM) [1] was proposed to solve nonlinear optimiza-

tion problems by turning the problem into least squares form and applying regression.

In 2D domain, SDM has been proven to be successful for facial landmark localiza-

tion. Recently Camgoz et al. [82] achieved state-of-the-art performance on facial land-

mark localization in 3D depth images using SDM. They conducted experiments using

Scale-Invariant Feature Transform (SIFT) [83] and Histogram of Oriented Gradients

(HOG) [59] to represent local features of facial landmarks and showed that both of the

features yield accurate localization results. Taking [82] as a baseline, we propose to

use ridge regression for Supervised Descent Method (which we call Supervised Ridge

Descent) instead of least squares regression for facial landmark localization in depth

images. Additionally, we propose to change feature sizes in each iteration in a coarse to

fine fashion. In this way, we aim to capture more details in later iterations by focusing

on smaller regions.

8.1. Supervised Descent Method (SDM)

Supervised Descent Method has achieved state-of-the-art performances in several

computer vision applications which previously relied heavily on nonlinear optimization
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methods [1, 84]. Xiong et al. [1] proposed to approach the non-linear optimization by

learning the descent directions from the training samples and then use these previously

learned descent directions on new unseen test samples. SDM’s best known application

is facial landmark localization, also known as the IntraFace [85]. It has been used to

achieve state-of-the-art performances in face tracking and alignment.

Facial landmark localization using SDM starts with creating an average face shape

which provides the initial landmark locations for the face images. At the beginning

of the training, landmarks are placed in these initial locations (x0). Then the shape

increment (∆x) required to displace the landmarks from their current location (xk) to

its ground truth location (x∗) is calculated. This is written as a function of the features

extracted from the current shape estimate (φk) as:

∆xk = x∗ − xk = Rkφk + bk (8.1)

To estimate the parameters of this function, Rk and bk, the problem is written in least

squares format as in Equation 8.2, where i and k represent the sample and iteration

indices, respectively.

argmin
Rk,bk

∑
xik

∥∥∆xik −Rkφ
i
k − bk

∥∥2 (8.2)

By using the closed form solution of least squares regression, both Rk and bk parameters

are estimated. Then Rk and bk are used to update the location of the landmark as:

xk+1 = xk +Rkφk + bk (8.3)

The training procedure continues until the landmarks converge to the actual positions.

When a test sample comes, landmarks are placed in their initial positions (x0) and

their positions are updated using Equation 8.3.
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8.2. Supervised Ridge Descent (SRD)

SDM was originally designed to use least square regression (LSR) to estimate its

predictor parameters. While using LSR, one needs to take the inverse of the XTX

matrix, X being the observations of predictors. However, the XTX matrix becomes

singular when the observation size is large and/or the predictors are strongly correlated.

To overcome the singularity issue Xiong et al. [1] proposed to use PCA to regularize

their matrix before taking the inverse of it.

In this study we propose to use ridge regression (RR) instead of LSR, in which the

matrix singularity issue is dealt by adding a ΓTΓ matrix to the XTX matrix, Γ being

the regularization term which is proportional to the identity matrix. Although we lose

precision by taking the inverse of ΓTΓ + XTX instead of XTX, we avoid over-fitting

and large variances in the estimators.

Our formalization of ridge regression can be seen in Equation 8.4, in which βk,

λk, bk represent the estimator, regularization term and offset parameter of the kth

iteration, respectively. The rest of the parameters ∆xik and φik represent the landmarks’

distance from the ground truth and their features in these positions of the ith sample,

respectively. As in [82] and [84] we used HOG features as facial landmark descriptors.

However, in each iteration, the size of the HOG features and the regularization term’s

value has been decreased to be able to descend more precisely to the ground truth.

argmin
βk,bk

∑
xik

∥∥∆xik − (φik)
′βk − bk

∥∥2 + ‖λkβk‖2 (8.4)

To calculate the ridge regression estimator, βk, for each iteration, we use Equation 8.5

in which I and λk represent the identity matrix with the same size as the observation

matrix and the regularization term of the kth iteration. Φk and ∆Xk are constructed

by concatenating each training samples’ HOG features and distances from the ground

truth into two matrices, respectively. Note that both the feature matrix Φk and shape
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increment ∆Xk are normalized to zero mean before regression.

βk = ((Φk)
TΦk + λkI)−1(Φk)

T∆Xk (8.5)

After learning the ridge regression estimator, βk, and calculating the offset bk for each

iteration, we use Equation 8.6 to localize facial landmarks starting from the initial

points which are defined by the average landmark positions of the training samples.

xik+1 = xik + (φik)
′βk + bk (8.6)

In Equation 8.6, φik, x
i
k+1 and xik represent the ith sample’s HOG features of the kth

iteration and the same sample’s facial landmarks’ locations of the k + 1th and kth

iterations, respectively.

8.3. Experiments

To evaluate the proposed method, we conducted experiments on the commonly

used Bosphorus 3D Face Database [86]. The Bosphorus database contains 4666 face

samples belonging to 105 users. Each sample’s 2D color image, 3D point cloud and

manually annotated 24 facial landmark positions are provided by the database. The

Bosphorus database contains a variety of pose and facial expression variations as well

as occluded faces, making it a challenging database.

In our experiments, we worked on samples with frontal poses which had no oc-

cluding objects covering the face. 22 of the 24 facial landmarks were selected to be

localized since the other two are ear dimples and are not visible in frontal images.

Selected landmarks are eye, mouth, nose and eyebrow corners, middle points of lips,

eyebrows, nose, chin, and the nose saddles, all of which can be seen in Figure 8.1.

We compared our method with the state-of-the-art 3D facial landmark localiza-

tion methods for depth images. A summary of these methods are given in Table 8.1.

To be able to compare our method with the most successful methods, namely Sukno
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Figure 8.1. 22 landmarks used in our experiments.

et al. [79] and Camgoz et al. [82], who are both using statistical facial landmark lo-

calization methods, we used the same experimental setup as theirs and reported our

results on 10 landmarks, which are common to all of the methods. We selected the

frontal non-occluded face samples and divided them into two folds in which the users

were exclusive to their folds. All the experiments have been done using two-fold cross-

validation and we iterated Supervised Ridge Descent (SRD) six times as it usually

converges after the fourth iteration.

Table 8.1. Summary of the proposed method and the state-of-the-art methods.

(#LM = Number of Landmarks)

#LM Training Size Test Size Features Method Used

Alyüz et al. [74] 5 − 2902 Shape Index Heuristics

Creusot et al. [78] 14 99 2803 Surface Descriptors LDA and Adaboost

Sukno et al. [79] 14 1402 x 2 1402 x 2 ASPC [87] Statistical Shape Models

Camgoz et al. [82] 10 1446 x 2 1446 x 2 SIFT [83] - HOG [59] SDM [1]

SRD (Our method) 22 1420 x 2 1420 x 2 HOG [59] SDM [1] - Ridge Regression [88]

In our first experiments, our aim is to find the optimum λk values and HOG

feature sizes. Our experiments yield optimum λk values to be [300.00, 110.40, 40.60,
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14.94, 5.49, 2.02, 0.74] and HOG feature sizes to be [0.20, 0.17, 0.14, 0.12, 0.09, 0.06]

×ImageSize for the iterations from one to six, respectively.

The SRD method has two main novelties when compared to the SDM: 1) the

use of ridge regression and 2) the use of adaptive feature sizes from coarse to fine

resolution. In order to evaluate the independent contributions of these novelties, we

performed several experiments by incrementally adding ridge regression and adaptive

features to the classical SDM. As it can be seen from Table 8.2, using ridge regression

instead of least squares regression improves the performance drastically (See SDM and

SRD with Fixed Feature Size columns). Similarly, using adaptive features instead of

fixed features increases the performance for both SDM and SRD approaches (See SDM

vs. SDM with Adaptive Feature Size columns and SRD vs. SRD with Fixed Feature

Size columns). By incorporating both ridge regression and adaptive features, our SRD

approach attains the best overall results (See SRD column).

As observed from Table 8.2, our best performing landmarks are eye and mouth

corners, which have strong geometric characteristics. However, our method struggled

to localize chins and nose saddles which are difficult to locate accurately even by

manual annotation. These findings were also backed up as we visualized the best and

worst performing facial samples which can be seen in Figure 8.3. It can be seen from

Figure 8.3 that ground truth locations of nose saddles differ for each subject which is

probably due to the subjective preferences of the manual annotators.

To see if these results are consistent with all the samples, we calculated the

cumulative error distribution, which can be seen in Figure 8.2. By analyzing the curves

of chin and nose saddles, we can confirm that both of these landmarks are problematic

landmarks and their error is distributed over the whole database. This may be caused

by false annotation of the data as these landmarks are more ambiguous than the others.

To compare our method with the the state-of-the-art methods, we used a subset

of 10 points that most methods reported results on. As it can be seen in Table 8.3

the proposed method achieves the state-of-the-art performance on all of the landmarks
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Table 8.2. Landmarks’ mean and standard deviation of errors. SDM = Supervised

Descent Method, SRD = Supervised Ridge Descent, FFS = Fixed Feature Size,

AFS = Adaptive Feature Size.

Landmarks SDM SDM with AFS SRD with FFS SRD (Our Method)

Outer left eyebrow 5.01± 2.97 4.16± 2.41 4.39± 2.58 4.13± 2.36

Middle left eyebrow 5.17± 3.07 4.69± 2.67 4.68± 2.81 4.37± 2.56

Inner left eyebrow 4.02± 2.45 3.52± 1.92 3.48± 2.08 3.13± 1.74

Inner right eyebrow 3.86± 2.23 3.28± 1.75 3.34± 1.97 2.99± 1.66

Middle right eyebrow 4.68± 2.86 4.19± 2.39 4.11± 2.49 3.88± 2.25

Outer right eyebrow 5.02± 4.10 4.19± 3.43 4.23± 3.53 4.02± 3.33

Outer left eye corner 3.16± 2.00 2.81± 1.57 2.63± 1.68 2.56± 1.45

Inner left eye corner 2.28± 1.55 2.12± 1.23 1.93± 1.39 1.90± 1.14

Inner right eye corner 2.10± 1.46 2.03± 1.21 1.84± 1.34 1.84± 1.15

Outer right eye corner 3.04± 2.00 2.89± 1.81 2.57± 1.84 2.51± 1.63

Nose saddle left 7.61± 3.96 7.08± 3.77 7.16± 3.73 6.78± 3.59

Nose saddle right 7.77± 4.03 7.29± 3.81 7.32± 3.82 6.92± 3.66

Left nose peak 2.51± 1.99 2.21± 1.31 2.18± 1.81 1.96± 1.20

Nose tip 3.34± 2.41 2.96± 1.90 3.01± 2.27 2.65± 1.76

Right nose peak 2.56± 2.04 2.18± 1.23 2.18± 1.96 1.99± 1.26

Left mouth corner 4.37± 3.82 3.09± 1.97 3.41± 3.39 2.92± 2.13

Upper lip outer middle 3.66± 3.52 2.71± 1.95 2.99± 3.25 2.46± 2.04

Right mouth corner 4.50± 3.85 3.05± 1.92 3.54± 3.33 2.91± 2.07

Upper lip inner middle 3.62± 3.47 2.64± 1.90 2.84± 3.25 2.39± 1.96

Lower lip inner middle 4.65± 5.01 2.60± 2.09 3.56± 4.44 2.39± 2.28

Lower lip outer middle 5.49± 5.59 3.14± 2.35 4.30± 5.07 2.90± 2.65

Chin middle 6.45± 5.60 5.32± 3.60 5.65± 4.87 5.08± 3.45

Mean Error 4.31± 3.18 3.55± 2.19 3.70± 2.86 3.30± 2.15
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except the nose tip. Considering the manual annotation error for the nose tip (2.96mm,

see Table 8.3), our average automatic localization error (2.65mm) can still be considered

as not too high.

Table 8.3. Mean and standard deviation of 10 common facial landmark localization

errors on Bosphorus 3D face database.

Inner Eye Outer Eye Nose Tip Nose Mouth Chin

Corners Corners Corners Corners

Manual Annotation [74] 2.51 − 2.96 1.75 − −

Alyüz et al. [74] 3.70 − 3.05 3.10 − −

Creusot et al. [78] 4.14± 2.63 6.27± 3.98 4.33± 2.62 4.16± 2.35 7.95± 5.44 15.38± 10.49

Sukno et al. [79] 2.85± 2.02 5.06± 3.67 2.33± 1.78 3.02± 1.91 6.08± 5.13 7.58± 6.72

Camgoz et al. [82] (SIFT) 2.26± 1.79 4.23± 2.94 2.72± 2.19 4.57± 3.62 3.14± 2.71 5.72± 4.31

Camgoz et al. [82] (HOG) 2.33± 1.92 4.11± 3.01 2.69± 2.20 4.49± 3.62 3.16± 2.70 5.87± 4.19

SRD (Our method) 1.87± 1.14 2.54± 1.54 2.65± 1.76 1.97± 1.23 2.92± 2.10 5.08± 3.45

8.4. Discussion

Many applications rely on the analysis of facial data to analyze, recognize and

understand humans and their behaviors. Many of these applications start with facial

landmark localization to be able to either align faces or track these landmarks. Thus

a successful facial landmark localization is essential to the success of various facial

processing tasks.

In this chapter, we presented Supervised Ridge Descent, in which we proposed

using ridge regression instead of least squares regression while training Supervised

Descent Method. We also use decreasing feature sizes in each iteration, which become

smaller as the system iterates, turning the localization into a coarse to fine approach.

Our experiments show that both improvements increase the performance significantly.

SRD was trained using HOG features in a similar manner to SDM. We experi-

mented on the Bosphorus 3D Face Database and compared our method with the state-

of-the-art methods, which work on 10 common facial landmarks of the Bosphorus 3D
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Figure 8.3. The first row shows the faces with the best landmark localization

performance, while the second row shows samples with the worst performance. Green

(Light) Dots = Ground Truth, Blue (Dark) Dots = Prediction. (Best seen in color)

Face database, namely, eye corners, nose tip, nose corners, mouth corners and chin.

Except for the nose tip, our approach achieved state-of-the-art performance on all of

the landmarks landmarks. However, our nose tip error is close to human annotation

done by [74], which may indicate that the annotation variance may be the reason of

this behaviour.

To improve our system, we plan to use 3D descriptors instead of 2D descrip-

tors. To generalize our system, cross database experiments should also be conducted.

Furthermore, feature learning methods can be used to learn features instead of using

descriptors such as HOG.
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9. CONCLUSION

In this thesis, we present an interactive communication interface for the hearing

impaired, which we called HospiSign, that is designed to assist the Deaf in their hospital

visits. The HospiSign platform guides its users through a tree-based activity diagram by

asking specific questions and requiring the users to answer from the given options. This

approach alleviates the problem of recognizing the sign displayed by the user among

all the signs, since the system only looks for the possible answers to recognize the sign

in each step. Our experiments show that the activity diagram not only increases the

recognition performance of the system, but also makes our system more user-friendly

and accessible. The system consists of a personal computer, a touch display to visualize

the questions and answers, and a Microsoft Kinect v2 sensor, which provides body

pose information, to capture the responses of the users. The developed software for

the interface was designed in order to be easily adaptable to other applications, such

as banking applications.

In order to develop the proposed system, we first collected BosphorusSign, a

Turkish Sign Language (Türk İşaret Dili, TİD) corpus in health and finance domains.

We have collected 859 sample signs from three categories: 487 samples belonging to

the health domain, 177 samples belonging to the finance domain and 195 samples

comprising commonly used signs and phrases in everyday life. The corpus is aimed to

contain six repetitions from 10 native signers, making the corpus the largest available

database for sign language recognition.

The database is collected using the Microsoft Kinect v2 sensor, and all the modal-

ities that are provided by the sensor are recorded. Recording sessions have been con-

ducted using the recording software we have developed, which guides the subject by

displaying the sign samples and asking for their repetitions. The software also enables

the recording person to annotate sign borders online. The script for each recording

session is generated randomly so that each session would be unique.
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BosphorusSign has two main target users. The first target user group is sign lan-

guage recognition researchers. Sign language recognition community will be provided

with recording sessions and their sign border annotations. The second target user

group is the sign language linguists, who will be able to study our publicly available

samples and their annotations. The corpus will also serve as a lexicon to people who

would like to learn Turkish Sign Language, similar to [89].

To realized the sign language recognition module of HosipSign, we propose using

several features, normalization techniques, temporal modeling approaches and classifi-

cation methods. We conducted experiments in order to find the best combination of

features and came to the conclusion that combining Hand Joint Distance and Hand

Movement Distance features achieved the highest recognition performance. Moreover,

our experiments showed us that both the Dynamic Time Warping (DTW) and Tempo-

ral Template (TT) based temporal modeling approaches and their respective classifica-

tion methods, k-Nearest Neighbors and Random Decision Forests, yielded competitive

results. Evaluated on a subset of BosphorusSign consisting of 662 samples belonging

to 33 sign classes that are collected from three native TİD users, DTW and TT based

approaches achieved 96.75% and 95.63% mean recognition performance respectively.

Moreover, we have investigated the applicability of domain adaptation techniques

to the gesture recognition problem, which is closely related to the sign language recog-

nition field, and reported improvements in the performance. As future work, we are

planing to apply domain adaptation methods to improve the user independence.

Last but not least, we have studied facial landmark localization techniques in

color images, which are widely used in sign language recognition, in order to extract

facial gestures. We have used Supervised Descent Method to locate facial landmarks on

color videos and used these locations to extract the baseline features more accurately.

Furthermore, we have proposed an extension to Supervised Descent Method, which we

called Supervised Ridge Descent, that uses Ridge Regression instead of Least Squares

Regression. The proposed method achieved state-of-the-art facial landmark localization

performance in frontal depth images.
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www.cmpe.boun.edu.tr/tid/, accessed at January, 2016.


