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Abstract

Sign languages are visual languages produced by the
movement of the hands, face, and body. In this paper, we
evaluate representations based on skeleton poses, as these
are explainable, person-independent, privacy-preserving,
low-dimensional representations. Basically, skeletal repre-
sentations generalize over an individual’s appearance and
background, allowing us to focus on the recognition of mo-
tion. But how much information is lost by the skeletal rep-
resentation? We perform two independent studies using two
state-of-the-art pose estimation systems. We analyze the ap-
plicability of the pose estimation systems to sign language
recognition by evaluating the failure cases of the recogni-
tion models. Importantly, this allows us to characterize the
current limitations of skeletal pose estimation approaches
in sign language recognition.

1. Introduction
Sign languages are visual languages produced by the

movement of the hands, face, and body. As languages that
rely on visual communication, recordings are in video form.
Current state-of-the-art sign language processing systems
rely on the video to model tasks such as sign language
recognition (SLR) and sign language translation (SLT).
However, using the raw video signal is computationally ex-
pensive and can lead to overfitting and person dependence.

In an attempt to abstract over the video informa-
tion, skeleton poses have been suggested as an explain-
able, person-independent, privacy-preserving, and low-
dimensional representation that provides the signer body
pose and information on how it changes over time. Theo-
retically, skeletal poses contain all the relevant information

required to understand signs produced in videos, except for
interactions with elements in space (for example, a mug or
a table).

The recording of accurate human skeleton poses is dif-
ficult and often intrusive, requiring signers to wear spe-
cialized and expensive motion capture hardware. Fortu-
nately, advances in computer vision now allow the estima-
tion of human skeleton poses directly from videos. How-
ever, as these estimation systems were not specifically de-
signed with sign language in mind, we currently do not
understand their suitability for use in processing sign lan-
guages both in recognition or production.

In this paper, we evaluate two pose estimation systems
and demonstrate their suitability (and limitations) for SLR
by conducting two independent studies on the CVPR21
ChaLearn challenge [33]. Because we perform no pretrain-
ing of the skeletal model, the final results are considerably
lower than potential end-to-end approaches (§3). The re-
sults demonstrate that the skeletal representation loses con-
siderable information. To better understand why, we evalu-
ate our approaches (§4), categorize their failure cases (§5),
and conclude by characterizing the attributes a pose estima-
tion system should have to be applicable for SLR (§6).

2. Background

2.1. Pose Estimation

Pose estimation is the task of detecting human figures
in images and videos to determine where various joints are
present in an image. This area has been thoroughly re-
searched [30, 12, 7, 20, 19] with objectives varying from the
predicting of 2D/3D poses to a selection of a small specific
set of landmarks or a dense mesh of a person. Vogler [38]
showed that the face pose correlates with facial non-manual
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features.
OpenPose [7, 32, 8, 40] was the first multi-person sys-

tem to jointly detect human body, hand, facial, and foot
keypoints (135 keypoints in total) in 2D on single images.
While this model can estimate the full pose directly from
an image in a single inference, a pipeline approach is also
suggested where first, the body pose is estimated and then
independently the hands and face pose by acquiring higher-
resolution crops around those areas. Building on the slow
pipeline approach, a single-network whole-body OpenPose
model has been proposed [21], which is faster and more ac-
curate for the case of obtaining all keypoints. Additionally,
with multiple recording angles, OpenPose also offers key-
point triangulation to reconstruct the pose in 3D.

DensePose [20] takes a different approach. Instead of
classifying for every keypoint which pixel is most likely,
similar to semantic segmentation, each pixel is classified
as belonging to a body part. Then, for each pixel, know-
ing the body part, the system predicts where that pixel is
on the body part relative to a 2D projection of a represen-
tative body model. This approach results in reconstructing
the full-body mesh and allows sampling to find specific key-
points similar to OpenPose.

MediaPipe Holistic [19] attempts to solve the 3D pose
estimation problem directly by taking a similar approach to
OpenPose, having a pipeline system to estimate the body
and then the face and hands. It uses a dense mesh model for
the face pose containing 468 points, but resorts to skeletal
joints for the body and hands. Unlike OpenPose, the poses
are estimated using regression rather than classification and
are estimated in 3D rather than 2D.

2.2. Sign Language Recognition

Sign language recognition (SLR) is the task of recogniz-
ing a sign or a sequence of signs from a video. This task has
been attempted both with computer vision models, assum-
ing the input is the raw video, and with poses, assuming the
video has been processed with a pose estimation tool.

2.2.1 Video to Sign

Camgöz et al. [4] formulate this problem as one of transla-
tion. They encode each video frame using AlexNet [24],
initialized using weights that were trained on ImageNet
[16]. Then they apply a GRU encoder-decoder architec-
ture with Luong Attention [25] to generate the signs. In a
follow-up work [6], they use a transformer encoder [37] to
replace the GRU and use Connectionist Temporal Classifi-
cation (CTC) [18] to decode the signs. They show a slight
improvement with this approach over the previous one.

Adaloglou et al. [1] perform a comparative experimen-
tal assessment of computer vision-based methods for the
SLR task. They implement various approaches from pre-

vious research [3, 15, 36] and test them on multiple datasets
[22, 4, 39, 36] either for isolated sign recognition or contin-
uous sign recognition. They conclude that 3D convolutional
models outperform models using only recurrent networks
because they better capture temporal information and that
convolutional models are more scalable given the restricted
receptive field, which results from their “sliding window”
technique.

2.2.2 Pose to Sign

Upper body poses have been widely used as a feature for
computational sign language research [14], due to their
signer-invariant representation capabilities. They have been
included into recognition [17], translation [5], or detection
[28] frameworks, either in raw coordinate form or as lin-
guistically meaningful symbols extracted from joint coordi-
nates [13].

Before the deep learning era, most sign language sys-
tems utilized specialized sensors, such as Kinect [43, 10],
to estimate signers pose in real-time [31]. There have
also been attempts to train models on sign language data
[29, 11, 26] which extract low-resolution skeletons, i.e., few
joints. However, these approaches suffered from noisy esti-
mations and had deficient hand joint resolution.

As with any subfield of computer vision, human pose
estimation also improved with the introduction of deep
learning-based approaches. Open source, general-purpose
human pose estimation models, such as convolutional pose
machines [41] and their predecessor OpenPose [7], became
widely used in sign language research. Ko et al. [23] uti-
lized a transformer-based translation based purely on skele-
tal information. Albanie et al. [2] proposed using pose es-
timates to recognize co-articulated signs. They further used
the pose estimates to train knowledge distillation networks
and learn meaningful representations for downstream tasks.

3. Experiments
To evaluate whether pose estimation models are applica-

ble for SLR, we participated in the CVPR21 ChaLearn chal-
lenge for person-independent isolated SLR on the Ankara
University Turkish Sign Language (AUTSL) [34] dataset.
Even though the dataset includes Kinect pose estimations,
Kinect poses have not been made available for the chal-
lenge. We processed the dataset using two pose estimation
tools: 1. OpenPose Single-Network Whole-Body Pose Es-
timation [21]; and 2. MediaPipe Holistic [19]; and made
the data available via an open-source sign language datasets
repository [27].

We approach the recognition task with two independent
experiments performed by different teams unaware of the
other team’s work throughout the validation stage. In the
validation stage, each team focussed on one pose estima-
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tion approach, and in the test stage, both teams got access
to both pose estimation outputs. We eventually submitted
three systems: 1. based on OpenPose poses; 2. based on
Holistic poses; 3. based on both OpenPose and Holistic
poses combined (concatenated).

3.1. Team 1

Team 1 worked with OpenPose [21] pose estimation
output and used the SLR transformer architecture from
Camgöz et al. [6]. The model takes as input a series of
feature vectors, in this case, human upper body skeletal co-
ordinates extracted from the video frames. These are each
projected to a lower dimension hidden state vector. The size
of the hidden state remains constant throughout the subse-
quent operations. A sinusoidal positional encoding is added
to provide temporal information. This is then passed to a
subnetwork consisting of a multiheaded self-attention layer,
followed by a feedforward layer. After each of these layers,
the output is added to the input and normalized. This sub-
network can be repeated any number of times. Finally, the
output is fed to a linear layer and softmax to give probabili-
ties for each class (Figure 1).

Connectionist Temporal Classification

Linear Linear LinearLinear Linear Linear

KEKEKE

Self-Attention

FF FF FFFF FF FF

Add & Normalize

Add & Normalize

Softmax Softmax SoftmaxSoftmax Softmax Softmax

PE PE

Linear Linear LinearLinear Linear Linear

PE

Figure 1. Diagram of Team 1’s model with one subnetwork (in
green). (KE: Keypoint extraction, PE: Positional encoding, FF:
feed forward)

The model is trained using CTC loss. This is designed to
allow the output to be invariant to alignment; however, this
is not a significant concern when there should only be one
output symbol. The final prediction is obtained via CTC
beam search decoding, collapsing multiple same class out-
puts into one. As the model is trained to predict a single
class per video, it does not predict different classes within a
sequence.

The number of layers, heads, hidden size, and dropout
rate affect the model complexity. There is, therefore, a
tradeoff between sufficient complexity to model the data
and overfitting.

Additionally, as a baseline, the pose estimation keypoints
were replaced with the output of three off-the-shelf image-
based frame feature extractors, giving us small dense rep-
resentations for each frame. Three extractors were used: 1.
EfficientNet-B7 [35]; 2. I3D trained on Kinetics [9]; and 3.
I3D trained on BSL1K [2].

3.2. Team 2

Team 2 worked with the MediaPipe Holistic [19] pose
estimation system output. From the 543 landmarks, the face
mesh was removed which consists of 468 landmarks and the
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Figure 2. Diagram of Team 2’s model. (KE: Keypoint extraction)
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remaining 75 landmarks were used for the body and hands.
A standard sequence classification architecture was used.

The model takes as input a series of feature vectors, con-
structed from a flat vector representation of the pose con-
catenated with the 2D angle and length of every limb, us-
ing the pose-format1 library. These representations are sub-
jected to a 20% dropout, normalized using 1D batch nor-
malization, and are projected to a lower dimension hidden
state vector (512 dimensions). This is then passed to a two-
layer BiLSTM with hidden dimension 256, followed by a
max-pooling operation to obtain a single representation vec-
tor per video. Finally, the output is fed to a linear layer and
softmax to give probabilities for each class (Figure 2).

The model is trained using cross-entropy loss with the
Adam optimizer (with default parameters) and a batch size
of 512 on a single GPU. No data augmentation or frame
dropout is applied at training time, except for horizontal
frame flip to account for left-handed signers in the dataset.

4. Results

Table 1 shows our teams’ results on the validation set.
We note that both teams’ approaches using pose estimation
performed similarly, with validation accuracy ranging be-
tween 80% and 85%. It rules out trivial errors and imple-
mentation issues that, despite working independently, and
with two separate pose estimation tools, both teams achieve
similar evaluation scores. Furthermore, from a comparison
between the pose estimation based systems (80-85%) and
the pretrained image feature extractors (38-68%), we can
see that pose estimation features do indeed generalize bet-
ter to the nature of the challenge, including unseen signers
and backgrounds.

Team 1 Team 2

EfficientNet-B7 38.80% —
I3D (Kinetics) 47.46% —
I3D (BSL1K) 68.65% —

OpenPose 83.25% 79.99%
Holistic 85.63% 82.14%

OpenPose+Holistic 84.16% 82.89%
Table 1. Results evaluated on the validation set with various frame-
level features.

We submitted Team 2’s test set predictions to the official
challenge evaluation. On the test set, both OpenPose and
Holistic performed equally well despite making different
predictions, each with 78.35% test set accuracy. However,
our combined system, which was trained using both pose
estimations, achieves 81.93% test set accuracy.

1https://github.com/AmitMY/pose-format

5. Analysis
The interpretability of skeletal poses allows us to assess

them qualitatively using visualisation. We manually review
our model’s failure cases and categorize them into two main
categories: hands interaction and hand-face interaction.

Hands Interaction When there exists an interaction be-
tween both hands, or one hand occludes the other from the
camera’s view, we often fail to estimate the pose of one of
the hands (Figure 3) or estimate it incorrectly such that the
interaction is not clearly shown (Figure 4).

Figure 3. Example of hands interaction, where the pose estimation
fails for one of the hands (Holistic).

Figure 4. Example of hands interaction, where the pose estimation
does not reflect the existing interaction (Holistic).

Hand-Face Interaction When there exists an interaction
between a hand and the face, or one hand overlaps with the
face from the camera’s angle, we often fail to estimate the
pose of the interacting hand (Figure 5).

These cases of missed interactions between the differ-
ent body parts often lose the essence of the sign, where the
interaction and the hand shape are the main distinguishing
features for those signs, and thus hinder the model’s abil-
ity to extract meaningful information from the pose that is
relevant to the sign.

Presence or absence of hand pose We describe a number
of failure cases of Holistic pose estimation above. Many of
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Figure 5. Example of hand-face interaction, where the pose esti-
mation fails for the interacting hand (Holistic).

them mean that keypoints for the hands are not available at
all, since Holistic can omit them if it fails to detect the hand.
As a complementary quantitative analysis, we correlate pre-
diction outcomes with the average number of frames where
hand pose was present (Figure 6).

Figure 6. Distribution of percent of frames containing the Holistic
pose estimation of the dominant hand in each validation sample,
grouped by whether the final prediction of our model was correct.

We find that on average, for all correct predictions
the percentage of frames that do contain hand keypoints
(85.13%) is significantly higher2 than for all incorrect pre-
dictions (79.78%). This is in line with our qualitative anal-
ysis.

6. Conclusions
Although many teams outperformed our models that use

only off-the-shelf skeletal representations, with the best
submission reaching 98.4% test set accuracy, it is unclear
how well such approaches will generalise to other datasets.
Our initial questions related to how good skeletal represen-
tations are for recognition, given their natural ability to gen-

2We tested for a significant difference of the mean values with a
Wilcoxon rank-sum test [42], p < 0.0001.

eralise. However, performance in the ChaLearn challenge
suggests that despite their benefits, considerable informa-
tion is lost in the skeletal representation that must be rep-
resented in the image domain. A qualitative analysis of our
models’ failure cases shows that pose estimation tools suffer
from shortcomings when body parts interact. We conclude
that pose estimation tools are not immediately applicable
for the use in sign language recognition – the current rep-
resentations are not sufficiently expressive, and that further
improvements with regard to interacting body parts is cru-
cial for their applicability.
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[20] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.
Densepose: Dense human pose estimation in the wild. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7297–7306, 2018. 1, 2

[21] Gines Hidalgo, Yaadhav Raaj, Haroon Idrees, Donglai Xi-
ang, Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Single-
network whole-body pose estimation. In ICCV, 2019. 2, 3

[22] Jie Huang, Wengang Zhou, Qilin Zhang, Houqiang Li, and
Weiping Li. Video-based sign language recognition without
temporal segmentation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018. 2

[23] Sang-Ki Ko, Chang Jo Kim, Hyedong Jung, and Choongsang
Cho. Neural Sign Language Translation based on Human
Keypoint Estimation. Applied Sciences, 9(13), 2019. 2

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 2

[25] Thang Luong, Hieu Pham, and Christopher D. Manning. Ef-
fective approaches to attention-based neural machine trans-
lation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421,
Lisbon, Portugal, Sept. 2015. Association for Computational
Linguistics. 2

[26] Marcos Luzardo, Matti Karppa, Jorma Laaksonen, and
Tommi Jantunen. Head Pose Estimation for Sign Language
Video. Image Analysis, 2013. 2

[27] Amit Moryossef. Sign language datasets. https:
//github.com/sign-language-processing/
datasets, 2021. 2

[28] Amit Moryossef, Ioannis Tsochantaridis, Roee Yosef Aha-
roni, Sarah Ebling, and Srini Narayanan. Real-time sign-
language detection using human pose estimation. 2020. 2

[29] Tomas Pfister, James Charles, Mark Everingham, and An-
drew Zisserman. Automatic and Efficient Long Term Arm
and Hand Tracking for Continuous Sign Language TV
Broadcasts. In Proceedings of the British Machine Vision
Conference (BMVC), 2012. 2

[30] Leonid Pishchulin, Arjun Jain, Mykhaylo Andriluka,
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