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Abstract—Variational AutoEncoders (VAEs) provide a means
to generate representational latent embeddings. Previous re-
search has highlighted the benefits of achieving represen-
tations that are disentangled, particularly for downstream
tasks. However, there is some debate about how to encour-
age disentanglement with VAEs, and evidence indicates that
existing implementations do not achieve disentanglement con-
sistently. The evaluation of how well a VAE’s latent space has
been disentangled is often evaluated against our subjective
expectations of which attributes should be disentangled for
a given problem. Therefore, by definition, we already have
domain knowledge of what should be achieved and yet we use
unsupervised approaches to achieve it. We propose a weakly-
supervised approach that incorporates any available domain
knowledge into the training process to form a Gated-VAE. The
process involves partitioning the representational embedding
and gating backpropagation. All partitions are utilised on
the forward pass but gradients are backpropagated through
different partitions according to selected image/target pairings.
The approach can be used to modify existing VAE models
such as beta-VAE, InfoVAE and DIP-VAE-II. Experiments
demonstrate that using gated backpropagation, latent factors
are represented in their intended partition. The approach
is applied to images of faces for the purpose of disentan-
gling head-pose from facial expression. Quantitative metrics
show that using Gated-VAE improves average disentanglement,
completeness and informativeness, as compared with un-gated
implementations. Qualitative assessment of latent traversals
demonstrate its disentanglement of head-pose from expression,
even when only weak/noisy supervision is available.

Keywords-VAE; disentanglement; representation learning;
generative models.

[. INTRODUCTION

Variational AutoEncoders (VAEs) have gained in popu-
larity for the unsupervised generation of low-dimensional
representational embeddings over high-dimensional distribu-
tions such as images [1]-[3]. It has been demonstrated [1],
[4]-[6] that if representations are disentangled (such that
each representational dimension uniquely and independently
corresponds with a single generative factor), then better
results are achieved in downstream tasks. However, how
to achieve disentanglement is an ongoing area of research,
and there is evidence that recent proposals do not achieve
disentanglement consistently [7], [8].
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Figure 1. Gated-VAE training principle. Images are paired according to
shared subsets of latent factors, where the subsets are derived from any
available supervision. A forward pass is made through the whole network,
but gradients are backpropagated through a specific latent partition z; where
i = [1...P] according to the input/target image pairing.

We present a novel weakly-supervised approach to train-
ing VAEs which we will refer to as a Gated-VAE (see Figure
1). This involves gating the backpropagation of gradients
through a partitioned latent space, where the gating is deter-
mined by the input and target image pairs. The modification
can be applied to any existing VAE model. The efficacy
of the Gated-VAE is demonstrated quantitatively using the
disentanglement, completeness and informativeness metrics
from [9] and is compared against un-gated implementations
of a vae. We consider the relative importance of disentangle-
ment versus informativeness by comparing the quantitative
metrics. We also qualitatively evaluate latent traversals for
images of faces where noisy/weak supervision is available.

The paper is structured as follows: In Section II we
provide an overview of recent endeavours to improve dis-
entanglement in VAEs. In Section III we cover background
theory in order to provide a baseline from which to build our
proposal. In Section IV we present the results from our quan-
titative and qualitative evaluations of Gated-VAE. Finally, a
conclusion summarises the results and their significance.

II. BACKGROUND

VAEs are a type of generative model, and their perfor-
mance for certain tasks is commonly compared against alter-
native generative models such as the Generative Adversarial



Network (GAN) [10]. GANs have been shown to provide
superior generative quality, but VAEs have a number of ad-
vantages which include outlier robustness, improved training
stability and interpretable, disentangled representations [7].
Disentangled representations are generally conceived to be
representations in which each element relates to an inde-
pendent (and usually semantically meaningful) generative
factor [4], [7]. Achieving a disentangled representation is
suggested to aid in downstream tasks [4], however, there
is some debate [7], [8] as to whether disentanglement
helps per se, or whether it is the informativeness of the
latent space that primarily determines the utility of the
embedding - i.e. whether the representation fundamentally
captures variation in the underlying factors. Disentanglement
is essential if a self-contained subspace in the full latent
embedding/representation needs to be extracted or masked
for downstream purposes. For example, consider the task of
unsupervised facial expression representation. In the wild,
most images of faces will contain some variation in head-
pose (i.e. on-axis frontal images of faces would represent the
exception, not the norm). In this application it may therefore
be useful to derive a representation of facial expression
independent of head-pose. If head-pose could be reliably
disentangled from facial expression, downstream tasks that
depend on facial expression could be fed with expression
representations invariant to head-pose. However, VAEs do
not disentangle with either predictability or consistency [8].

In recent years, various attempts have been made to
encourage disentanglement with VAEs, including increasing
the emphasis on reducing the distance between the posterior
and the prior [4], utilisation of alternative objective functions
[1], [5], [11], [12], Gaussian mixtures [13], use of alterna-
tive prior distributions [14], and cascaded vae models [7].
However, results from a review of 12,000 current implemen-
tations [8] indicate that there is almost as much influence
from random initialisation as there is from hyperparameter
selection and objective functions. Indeed, consistent disen-
tanglement has recently been demonstrated to be impossible
without inductive bias and subjective validation [7], [8]. In
other words, the typical evaluation of the inferred latent
space is subjectively compared (e.g. using reconstructions
of latent traversals) against our prior expectations / domain
knowledge concerning which attributes should be disen-
tangled for a given problem. Our work incorporates any
available supervision or domain knowledge into the training
procedure in order to encourage disentanglement.

Beyond subjective interpretation, there is not yet a con-
sensus on the best way to quantitatively measure disen-
tanglement, although various proposals have been made.
These include Separated Attribute Predictability [5], Mutual
Information Gap [15], FactorVAE metric [11], Modularity
[16], the (3-vae metric [4] and the later relative of the 3-vae
metric [9]. Whether any of these metrics measure disen-
tanglement as it is generally conceived is unclear [8]. The

metrics proposed by [9] have been chosen for evaluation,
they represent one of the most recent attempts to measure
disentanglement and distinguish between disentanglement
and informativeness, as well as providing an estimation of
completeness (terms described in more detail in Section
IV-A1). We utilise these metrics to contribute insight into the
relationship between informativeness and disentanglement.

1. METHODOLOGY

This section begins with an overview of vae theory before
a presentation of the currently proposed formulation.

A. Variational AutoEncoders - Background Theory

The reader is directed to [17]-[19] for a more detailed
introduction to VAEs. In essence, and following the process
for variational inference for a distribution of latent variables,
we start by sampling from a latent distribution z ~ p(z) and
generate dataset X of images x € RY with observational
distribution py(x|z) such that we may derive an inferred pos-
terior for the latent distribution as ¢, (z|x) that approximates
the true conditional latent distribution py(z|x). Both ¢4 (z|x)
and pg(x|z) are parameterised by neural network encoder
and decoder parameters ¢ and 6 respectively [1], [2], [17].
The traditional approach [5], [18] involves maximisation of
the Evidence Lower BOund (ELBO):

max Ex [LeLO ()] =

max Ex [E;q, ax) l0g po(x[2)] — BKL (g4(2]x)||p(2))]

o)

The first term on the RHS of Eq. 1 encourages re-
construction accuracy, and the Kullback-Liebler divergence
term (weighted by parameter 3 [4]) acts as a regulariser,
penalising approximations for ¢, (z|x) that do not resemble
the prior. The objective is therefore to maximise the marginal
log-likelihood of x over the latent distribution z [4], which
is assumed to be Gaussian with identity covariance z ~
N(0,T). The Gaussian assumption means that Eq. 1 may be
written using an analytical reduction of KL divergence [5]:

II;%X ]Ex [EELBO(x)] = I%EZBX Ex |:Ez~q¢(zx) [logpg (X|Z)] —

g(z (Bo()];; — In[Eg(x)],;) + H/%(X)H;)
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In Eq. 2 the [¥4(x)],; indicates the diagonal covariance,
and p,(x) is the mean. Both the mean and covariance
are learned by the network encoder and parameterise a
multivariate Gaussian that forms the inferred latent distri-
bution ¢4(z|x). The decoder network samples from z ~
¢s(z|x) using the reparameterisation trick [17] such that
z = py(x) + €4/Xy(x) where ¢ = N(0,I). One inter-
pretation of disentanglement posits that it is achieved if
145(2) = [ ¢4(z[x)p(x)dx = [, ¢:(:) [5].



During VAE training, the i reconstructed example from
the output of the network decoder Z; is typically compared
against the 4™ input example z;, which is therefore also used
as the target, and the marginal log likelihood is maximised
by minimising a loss (e.g. binary cross-entropy) between the
reconstruction and the target. Over the course of training,
the VAE thereby learns decoder parameters that produce the
best reconstruction, conditioned on the latent embedding of
the input image. In order for the vae to infer the generative
distribution z, the ground truth latent factors must both vary
between examples in the dataset, and take on the same value
in both input and target pairs. Letting each image in X have
K independent generative ground truth factors v € RX
ie. {vi}X, which we model using a latent generative
distribution z € RM such that M > K. Given that the input
image x, is usually equal to the target image x, (as is usual
for auto-encoding), the values of all ground truth generative
factors in the input image are therefore the same as the
values in the target image ie. vkq, = Vg, k = 1..K,
where vy, ;. is the ground truth factor £ for the input image,
and vy o, is the same ground truth factor k for the target.

Readers are referred to [2] for a review of the various
modifications proposed to the objective in Eq. 1 that en-
courage disentanglement and minimise reconstruction cost.
However, as mentioned, there is some evidence to suggest
that the random initialisation of the network has almost
as much impact as the network architecture and objective
functions have on the ability of the network to disentangle
the latent space [8]. Furthermore, VAE disentanglement is
often evaluated against prior subjective expectations, and
therefore, by definition, we are utilising domain knowledge
to evaluate the success of an unsupervised method. For
instance, Higgins et al. [4] generate reconstructions of traver-
sals/interpolations over the latent space in order to visually
ascertain which of the latent space dimensions correspond
e.g. with shape or rotation. Furthermore, it is often the
case that some form of weak supervision is available for
any given task. For example, if we have frames from a
sequence, it is likely that the appearance and identity of
individuals is unlikely to change between subsequent frames
within that sequence. In more extreme cases, full supervision
for all generative factors may be available and utilised to
achieve disentanglement in an entirely prescribed way (e.g.
[20]). We propose the Gated-VAE which allows domain
knowledge to be employed at training in order to encourage
disentanglement in a novel, weakly-supervised way.

B. Gated Variational AutoEncoders - Formulation

Often, weak supervision is available in some form (e.g.
data may be clustered, or have weak labels). If any su-
pervision is available then it should be incorporated into
training in order to aid disentanglement. A Gated-VAE
provides a means to incorporate available supervision into
existing VAE models. The intuition behind the Gated-VAE

is that input and target images can be paired according
to shared factors, and that the network should learn to
recognise and learn what is common between these pairs.
In other words, by pairing the input image with a target
image that shares specific latent factors, the network can be
encouraged to disentangle these shared factors. Such pairing
may be possible when weak supervision (e.g. clustering) is
available. If the supervision is available then it ought to be
incorporated where possible. Backpropagation of error can
then be directed through specified partitions of the latent
space such that different partitions are disentangled and
each contains information relating to the shared factors. The
approach is deemed to be weakly supervised because the
input and target images need to be paired according to some
prior knowledge or labels. Weak supervision is generally
used to describe the scenario whereby labels are available
but the labels only relate to a limited number of factors
(e.g. labels may be fully supervised and describe head-pose
in terms of roll, pitch and yaw, or be weakly supervised
and simply indicate that two images simply share the same
head-pose) [21]. Weak supervision should not be confused
with semi-supervision whereby fully informative labelling is
available but only for a subset of the data [22].

More concretely, we can define a subset of latent factors
s C v such that s € RE where L < K < M. We can
partition the latent space and train each partition by using
input/target pairs where z, # x, but where s; ;, = 514, V.
The partition will learn factors s; but not the factors in v
that are not in s. Designing the input/target pairs in such
a way requires domain knowledge, and therefore deviates
from unsupervised training to semi-supervised training.

Starting with a vae with an M-dimensional latent space,
we split the latent space into P partitions (that need not be
equal in size) such that g, (z|x) is parameterised as follows:

z = |21,22,...,2p| =

[(/%J(X) + 6\/2¢71(X)> S (M¢,P(X) te E¢,P(X))]
3)

During forward propagation, all partitions of the latent
space are used and concatenated together. Similarly, the
computation of the KL divergence is also taken over the
entire latent space either by concatenating the partitions
and computing the loss, or by computing the loss over
each partition and concatenating the loss. However, during
back-propagation, the gradient is gated according to the
input/target image pairing.

An example of two training iterations with P partitions
is depicted in Figure 1. In the first training iteration, Image
x is paired with target Image x’ such that x # 2’ but that x
and x’ have equal ground truth latent factors for a subset of
all ground truth factors, and gradients are backpropagated
from end-to-end but only through a specific partition of
the inferred latent space. For the second training iteration



Image x is paired with target image x/ such that z and
2 also have ground truth factors that are equal for only
a subset of all ground truth factors (but a different and
possibly overlapping subset to the subset shared between x
and z’), and gradients are backpropagated from end-to-end
but through a different partition of the latent space. Note
that the decoder has access to the entire latent space on the
forward passes to generate the reconstruction. If the pairing
of images is consistent according to the desired partitioning
across the entire dataset, then the partitions will contain
different factors. Even if disentanglement has not occurred
within partitions, disentanglement will occur between them.

Figure 2. Samples from the dSprites [23] dataset, varying in x-position,
y-position, rotation, size and shape.

In cases where reconstruction quality is desired then the
training process can be split into two. First, to prioritise
disentanglement using the Gated-VAE method, then by
fixing the weights of the encoder and latent space, and fine-
tuning the decoder by continuing its training to maximise
reconstruction quality using traditional VAE training (where
input image z, is identical to target image ).

IV. EXPERIMENTS

The experiments demonstrate that the weakly-supervised
Gated-VAE can be used to adapt existing VAE models in
order to improve disentanglement. The method is first tested
on synthetic data, and then on a dataset of faces.

A. Synthetic Data

We begin by demonstrating the quantitative performance
improvement achieved by applying gating to three non-
convolutional implementations of existing VAE models: (-
VAE [4], InfoVAE [1] and DIP-VAE-II [5]. The experiments
were undertaken 10 times in order to acquire averages and
standard deviations for the quantitative metrics.

The dSprites [23] dataset was used for initial experiments.
It comprises 737280 (64x64) images of white shapes on a
black background that vary over only five generative factors:
vo = shape (square, ellipse, heart), v; = size (6 sizes linearly
spaced), v = rotation (40 values over 27), vs = X-position
(32 values) and v4 = y-position (32 values). This dataset
was chosen as it is a common baseline used to test VAEs
[4], [8], [24]. Samples from dSprites can be seen in Figure 2.

Input/target image pairs are chosen according to equal
manifestations of generative factors. For example, in order
to train the partition that is intended to learn the size of the
shape in the image, a random batch of images is chosen
for the input images, and the corresponding target batch
is chosen such that the size of the shape in each of the

target images is the same as the size of the shape in each
of the paired input images. The same batching process can
be applied to pair images with the same x/y position, or
the same shape etc. One partition was used to represent
both x and y position dimensions in order to demonstrate
whether these two dimensions can be disentangled from each
other within a single partition (i.e. an input image with a
certain x/y position was paired with a target image with
the same x/y position such that two generative factors were
shared and only one partition was gated). Note that, in the
case of the dSprites dataset, full supervision is available
and is being used to identify the pairs. However, the labels
are not provided explicitly to the network by virtue of the
input/target pairing process of the Gated-VAE.

1) Evaluation - Synthetic Data: The disentanglement,
completeness and informativeness metrics from [9] are used
for quantitative evaluation of the Gated-VAE. These metrics
build on the 8-VAE metric proposed in [4] and are derived
using linear Lasso and non-linear Random-Forest (RF) re-
gressors that predict the ground truth factors using the latent
embeddings of a test dataset. The regressors provide a matrix
of relative importance, representing the importance of each
inferred latent dimension for predicting each of the ground
truth generative factors. These matrices are used to generate
Hinton diagrams [25] for visualisation purposes.

According to the definitions in [4], [6], [9], disentangle-
ment describes the degree to which each inferred factor in z
independently predicts a corresponding ground truth factor.
Concretely, and as defined in [9], disentanglement of inferred
factor z; = pg (%) is calculated as D; = (1 — Hx(F;))
where Hy (P;) = — kK:_Ul Pii; log e Py is the entropy and
Py = Rij/ Y p ! Rix is the probability that inferred factor
z; 1s used by a classifier or regressor to predict ground truth
factor v; (which is a modified form to [9] to be consistent
with terms in this paper). A weighting is calculated using
pi = >_; Rij/ > ijRij so that the average disentanglement
is weighted using >, p; D;. These definitions mean that a
disentanglement score of ~ 0 corresponds with an inferred
variable that does not contribute any predictive power.

Completeness [9] is complementary to disentanglement
in that it is calculated using the same relationships for
disentanglement as set out above but for each of the M
inferred latent dimensions, rather than the K generative
factors. A score of 1 for a generative factor v, means that
this generative factor is predicted by a single inferred latent
dimension, and a score of 0 means the generative factor is
predicted equally by all inferred latent dimensions.

Informativeness [9] describes whether the inferred latent
representation is useful in predicting ground truth factors.
In other words, it tells us whether the latent space con-
tains useful information about the generative factors. It is
quantified using the average regressor prediction error such
that a lower prediction error corresponds with a higher
informativeness and therefore a lower value is desirable. We
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Figure 3. Example Hinton diagrams for each of the gated and un-gated models depicting the relative importance of each inferred latent dimension z for
predicting the ground truth generative factors v. vg = shape, v; = size, v2 = rotation, vz = x-position and v4 = y-position.

used the normalised root mean squared error.

Given these definitions for informativeness and disentan-
glement, informativeness becomes distinct from disentangle-
ment, as an inferred latent representation may be highly
informative without necessarily being disentangled. The
characteristics of the metrics motivate the use of the RF (i.e.
non-linear) regressor, because learned embeddings do not
need to be linear with respect to their corresponding ground
truth factors [9]. For example, any rotational factors which
‘wrap’ around 27 may be embedded sinusoidally. Similarly,
learned embeddings capturing more than one generative
factor simultaneously may be non-linearly informative, even
though they are not disentangled. The results for both the
Lasso regressor and RF regressors are presented in Section
IV-A3. The Lasso regularisation was o = 0.02 for all runs
and the RF used 10 estimators each with a max depth of 12.

2) Models: Gating will be applied to three recently
proposed variants of VAEs: -VAE [4] (which increases the
pressure on the KL-divergence loss), InfoVAE [1] (which
minimises maximum mean discrepancy) and DIP-VAE-II
[5] (which minimises the 2nd central moment of the latent
space). Readers are referred to the original papers for a more
detailed description of these models. In terms of parameter
values, for S-VAE, 5 = 4 (as suggested by [4]), for DIP-
VAE-II, \,q = Ag = 250, and for InfoVAE )\, = 500
where all A_ parameters represent a weight on the respective
component(s) of the models’ objective functions.

The latent space z for all models had dimensionality

M = 8 and was split into P = 4 partitions of equal
size. M = 8 was chosen so that each partition could
represent at most 2 generative factors, where there are
5 generative factors in total. The architecture of the
basic network encoder comprises 2 fully connected layers
with batch normalization and ReLU activations, and the
decoder comprises 3 fully connected layers with batch
normalization, ReLU activations for the first two layers
and a sigmoid activation at the output. Modifications to the
loss functions are made to adapt each network for S-VAE,
InfoVAE and DIP-VAE-II. For all models, an Adam [26]
optimiser was used with a learning rate of 0.0001, and the
network was trained for 50 epochs with N = 128.

3) Results - Synthetic Data: Figure 3 shows example
Hinton diagrams for the relative importance of each of the
inferred latent dimensions z for predicting the ground truth
factors v, with and without our proposed gating, as well
as using Lasso and RF regression. In an ideal result, the
Hinton diagram would contain five distinct squares, with
only one square per column and one per row. Figure 3
demonstrates consistent allocation of four out of five factors
to their intended partitions in the latent space. Unfortunately,
rotation (vy) was not well encoded by either gated or un-
gated models. The informativeness (i.e. NRMSE) of rotation
for the gated and un-gated 8- VAE models were 0.985+0.004
and 0.9644-0.004 respectively. The results are similar for the
other two models: RF rotation informativeness for gated and
un-gated DIP-VAE-II are 0.991+0.003 and 0.983+0.008



Table T
AVERAGES WEIGHTED BY PREDICTOR IMPORTANCE WITH STANDARD DEVIATIONS FOR DISENTANGLEMENT, COMPLETENESS AND INFORMATIVENESS
WITH AND WITHOUT GATING FOR 3-VAE [4], INFOVAE [1] AND DIP-VAE-II [5] OVER 10 RUNS. NOTE: LOWER IS DESIRED FOR INFORMATIVENESS.

Regressor  Model Disent. Complete. (Un)Inform.
SVAE = 0.23750.039  0.27610.048  0.690-£0.019

Gated  0.609+0.136 0.478+0.104  0.432-0.087

Lasso MOVAE - 0.240+0.034  0.156+0.020  0.7720.013
Gated 0.647+0.091 0.495:0.070 0.481+0.062

- 031640.113  0.346+0.091  0.653-£0.033

DIP-VAE-L  Goted  0.48740.093  0.337+0.081  0.604-0.086

GVAE - 0.17250.033  0.237£0.032  0.460£0.007

Gated 0.631-0.113  0.667-£0.093  0.258+0.046

Random | o0 o - 0.11340.030  0.14240.026  0.483-0.004
Forest Gated  0.632+0.047  0.646--0.032  0.243+0.012
- 0.197+0.097  0.346+0.095  0.456-£0.008

DIP-VAE-IL  oted  0.486:£0.076  0.527+0.077  0.394+0.043

respectively; and 0.98540.004 and 0.96740.003 for gated
and un-gated InfoVAE. The NRMSE informativeness results
with the Lasso regressor are even closer to 1 for both gated
and un-gated models.

The results also indicate that the x/y position factors were
disentangled within a single latent partition. The examples
shown in Figure 3 suggest that this was achieved more
successfully than the un-gated equivalents. This may be
because the additional supervision afforded by the Gated-
VAE modification reduces the number of dimensions the
VAE is disentangling at any one time.

Table I shows the results for disentanglement, complete-
ness and informativeness for the three gated and un-gated
models averaged over 10 runs using N = 128 for the
Lasso and RF regressors. In all cases disentanglement was
increased with the use of the Gated-VAE as expected.
Interestingly, the informativeness of the latent space was
also increased, suggesting that the Gated-VAE improves
the usefulness of the learned embedding by embedding
more information than the un-gated equivalents. In all cases
apart from DIP-VAE-II with Lasso, gating achieved better
performance in completeness than the un-gated equivalent.
For DIP-VAE-II vs. Gated-DIP-VAE-II with Lasso, disentan-
glement was significantly improved in spite of comparable
informativeness. This suggests that a space may be disen-
tangled without being informative, or vice versa.

The consistent improvement of RF over Lasso suggests
the latent representation contained information about the
factors that was encoded in such a way that the non-linear
RF regressor was able to fit the relationships between z and
v but the Lasso regressor could not. The results demonstrate
how a latent representation may be informative even if
the factors are disentangled by any arbitrary degree. The
improvement of the Gated-DIP-VAE-II over DIP-VAE-II
was less pronounced than for the other models. This is
likely to be due to the relatively poor performance of DIP-
VAE-II compared with the other models, although based
on previous indications of the DIP-VAE-II’s performance
[5], the low performance itself may be due to the particular

hyperparameters used in the current experiments, and further
work should involve hyperparameter optimisation of the
DIP-VAE-II model.

Recon. Tariet Recon. Tariet Recon. Tariet Recon. Tariet

Figure 4.
VAE network with a fine-tuned decoder that demonstrate how location,
size, rotation, and shape were all recovered.

Reconstructions and corresponding targets for the Gated-3-

Finally, Figure 4 depicts Gated-3-VAE reconstructions.
The images demonstrate how, despite the poor regressor
metrics, all factors (including rotation) were nonetheless
encoded. In order to ‘fine-tune’ the network, all encoder
parameters for the trained Gated-VAE were fixed, and the
network decoder was then trained for 1 epoch according
to the typical VAE training procedure (where the input and
target images are identical).

B. Face Data

In order to demonstrate the effectiveness of Gated-VAE
on more complex data, the CelebA [27] dataset is used. The
CelebA dataset comprises 202,599 faces of 10,177 different
individuals. The dataset was converted to greyscale to expe-
dite training. OpenFace 2.0 [28] was used both to align the
faces and also to generate labels for head-pose (pitch and
yaw!') and facial expression (Facial Action Units - FACS),
and thereby provide a source of weak supervision with which
to train the Gated-VAE. The images were then clustered
using K-Means, yielding 2,500 clusters for head-pose and
4,000 for facial expression. Such a clustering method is
clearly not optimal if the goal is to achieve accurate labels
and ideal image pairings. However, accurate supervision may
rarely be available, and so this method is actually well-suited
as a demonstration of how to encourage disentanglement
when only noisy/weak supervision is available.

No roll labels were used because OpenFace 2.0 aligns faces according to
horizontal eye position and thereby removes variation in the roll dimension.



1) Evaluation - Face Data: As only weak labels (as
opposed to ground truth) are available, we are unable to
undertake the quantitative evaluation of performance as for
synthetic data. Instead, a qualitative evaluation is performed
by generating reconstructions of latent traversals. Such a
method is common in the VAE literature [4], [24] and is
recommended as a means of model diagnosis [29].

2) Model: Gating will be applied to a convolutional
implementation of the vanilla VAE network VAE which
has a weight 5 > 1 on the KL divergence term in the
objective function). This is because increasing the /3 term has
been shown to increase low-pass filtering characteristics (i.e.
removing detail) as a side-effect of disentanglement [24].
Given also that 3-VAE has been shown [8] not to disentangle
latent factors in a way that is consistent (at least not with our
subjective expectations) we leave disentanglement entirely
to the encouragement afforded by the gating with weak-
supervision. The latent space comprised two partitions of 6
(for head-pose) and 18 (for expression) dimensions.

Head-Pose Partition Dimensions Expression Partition Dimensions

Traversals [-2, 2]
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Figure 5. Reconstructions of traversals (between £2) of the two partitions
(head-pose and expression) of the latent space for Gated-VAE. Only the 8
most active dimensions for the expression partition are shown.

3) Results - Face Data: Reconstructions of latent space
traversals are shown in Figure 5. These traversals are gen-
erated by sampling and encoding a random image from
the dataset, and then interpolating along each dimension
step-wise between +2. It can be seen that head-pose has
been disentangled from the rest of the generative factors,
despite some degree of spill from facial expression appearing
in dimension 5 of the head-pose partition. Similarly, the
expression partition does not appear to contain any head-
pose information, although it is interesting to note that
appearance (e.g. skin colour and gender) has been encoded
in this partition, despite not having been provided with
supervision for this subset of factors. It can be seen that
dimensions 0-2 for the head-pose partition were not used,

which is as expected given that pitch and yaw can be
optimally encoded with only two dimensions.

V. CONCLUSION

We have presented a weakly-supervised modification to
the training process for VAEs which involves the partitioning
of the latent space and restriction or ‘gating’ of gradients
during backpropagation through the partitions where the
gating depends on the chosen input/target image pairings.
The Gated-VAE modification allows for domain knowledge
to be incorporated into the training process, and can be
applied to existing VAE models. The experiments compared
the performance of 8-VAE, DIP-VAE-II and InfoVAE with
and without gating using the evaluation metrics proposed
by [9], and a qualitative demonstration was presented in the
form of latent traversals with the CelebA [27] dataset.

Gated versions outperformed the un-gated equivalent
models in disentanglement, completeness and informative-
ness. The relationship between disentanglement and infor-
mativeness was illustrated, in that a disentangled latent space
did not necessarily imply informativeness. The Hinton dia-
grams demonstrate how gating consistently allocates the rel-
evant latent variables to a partition in the latent space thereby
achieving reliable disentanglement between partitions as
well as producing a more informative (and therefore more
useful) latent space than the un-gated equivalent. The Hinton
diagrams and individual factor results for informativeness
illustrate how the rotation factor was not well encoded by
either gated or un-gated models, despite being sufficiently
encoded to facilitate correct reconstruction (Figure 4). This
may be due to the fact that the rotation factor is lower in
its salience with respect to the pixel-wise cross-entropy loss
as compared with size, shape, and position. The un-gated
models also had negligible informativeness for rotation.
The demonstration of Gated-VAE on the CelebA dataset
demonstrated that, even with noisy, weak supervision (from
clustered OpenFace 2.0 output), compelling disentanglement
between head-pose and facial expression was nonetheless
achieved. The Gated-VAE’s consistent allocation of factors
to intended partitions in the latent space provides a means
to mask or extract informative partitions for the purposes of
downstream tasks. Further work is recommended to estab-
lish the efficacy of Gated-VAE for other downstream tasks
including HCI technologies and sign language translation.
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