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Abstract

An important goal across most scientific fields is the
discovery of causal structures underling a set of obser-
vations. Unfortunately, causal discovery methods which
are based on correlation or mutual information can of-
ten fail to identify causal links in systems which exhibit
dynamic relationships. Such dynamic systems (including
the famous coupled logistic map) exhibit ‘mirage’ corre-
lations which appear and disappear depending on the ob-
servation window. This means not only that correlation is
not causation but, perhaps counter-intuitively, that causa-
tion may occur without correlation. In this paper we de-
scribe Neural Shadow-Mapping, a neural network based
method which embeds high-dimensional video data into a
low-dimensional shadow representation, for subsequent es-
timation of causal links. We demonstrate its performance at
discovering causal links from video-representations of dy-
namic systems.

1. Introduction

Understanding causal structure is essential to the scien-
tific endeavour [15]. Over recent decades, numerous meth-
ods have been proposed which seek to discover causal struc-
ture from data (for reviews, see [22, 16, 6, 5]) but the task
is inherently challenging. Numerous solutions may exist
which are sufficient to explain the data, and causal links es-
timated using associational measures, such as correlation or
mutual information, may fail in systems which exhibit com-
plex state-based dependencies [20]. These state dependent
systems have been said to demonstrate mirage correlations
which appear and vanish over time. One such system is
given by the well-known coupled logistic map difference
equations [12]:

X[n+ 1] = X[n](rx − rxX[n]− βxyY [n])

Y [n+ 1] = Y [n](ry − ryY [n]− βyxX[n])
(1)
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Figure 1. Illustration of mirage correlation for Eq. 3 with rx =
3.8, ry = 3.8, βxy = .02, and βyx = .1 (i.e., there exists bi-
directional causality). Region A exhibits positive correlation, B
low correlation, C negative correlation, and D returns to positive
correlation. Example adapted from [20].

Here,X[n] and Y [n] are two discrete-time varying quan-
tities with parameters rx and ry and which causally influ-
ence each other via βxy and βyx, respectively. Figure 1
demonstrates not only that correlation is not causation, but
also that causation does not necessarily imply correlation,
and thus a different approach is needed.

Dynamic systems, such as those described using Eq. 3,
occur frequently in nature [12], and it is therefore impor-
tant that causal discovery methods can be applied. Unfortu-
nately, it is understood that the most well-known and popu-
lar paradigm for modeling causal relations Granger Causal-
ity does not perform well in such systems [20]. This is be-
cause Granger causality assumes separability, which refers
to the independence of the variables in the absence of causal
interactions. In dynamic systems, where the current state of
a variable may be heavily determined by the past of another,
separability is unlikely to hold.

Shadow Embeddings: This failure of Granger Causal-
ity has motivated a family of causal discovery methods that
operate on time-delayed coordinate embeddings. Takens
[21] showed that by concatenating time-delay versions of
the time series observations, one can recover the dynam-
ics of the full system even if only one, or a limited number,
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Figure 2. A 3D Lorenz attractor M and corresponding shadow
manifolds MX and MY constructed using three lags (lag degree
τ ).

of observational variables are used. This time-delay embed-
ding is known as a shadow manifold. Specifically, assuming
manifold M and T time-based observations X : M → R,
where X = {x1, x2, ...xT }, the shadow manifold MX is a
Hankel matrix of delayed segments from X:

MX =




x1 x2 · · · xw
x2 x3 · · · xw+1

...
...

. . .
...

xp xp+1 · · · xp+w


 (2)

where p is the number of lags, and w is the seg-
ment/window size. An example of the Lorenz dynamic
system being represented using two shadow manifolds is
shown in Figure 2. MX and MY are diffeomorphic em-
beddings of the system M.

Convergent Cross-Mapping (CCM): The embedding
spaces can be used to identify causal links between the vari-
ables X and Y using CCM [20]. Figure 3 shows shadow
manifolds MX and MY . Specifically, consider a particu-
lar time point in MX , illustrated with the star icon on the
left hand side of the figure. The corresponding timepoint
t∗ in MY , indicated by the star in the right hand side of
the figure. Additionally, there exists a collection of nearest
neighbors illustrated with circles near to the point Mt∗

X . The
time indices IX of this set of nearest neighbors MIX

X may be
far apart, despite their closeness in this shadow space. We
can do the same thing in reverse for MY by picking a time
point t� (the square on the right hand side), and finding the
time indices IY for nearest neighbors MIY

Y . If the neigh-
borhood of nearest neighbor indices IX , derived from MX ,
induces a dense neighborhood MIX

Y then we may conclude
that there exists a causal link Y → X. This relationship
can be tested in both directions (as illustrated in Figure 3)
to test whether X → Y. Furthermore, this process can be
used to iteratively test more complex causal systems. For
example, if the structure is confounding (i.e., a v-structure)
such that X← Z→ Y, then the CCM test would establish
this dependency structure.

Prior Work: A number of methods exist which lever-
age the principles behind CCM. Besides the original pre-
sentation of the method itself [20], it has been extended
to identify lags [23], evaluated for its robustness to noise
[14], improved using multivariate shadow embeddings [13],
and adapted for neural network integration [11]. A related
method involves the use of reservoir computing methods to
improve upon the efficiency of CCM [7].

More generally, methods fall into three predominant
groups: score-based, constraint based, and asymmetry
based. Score-based methods are learned by evaluating the
fit of the observations to a proposed structure, constraint
based methods test for statistical conditional independen-
cies, and asymmetry based methods test for differences that
arise when causality occurs in one direction compared with
the other. Some of the most well-known methods for causal
discovery are constraint based and include the PC algorithm
[19] and FCI [19], both of which test for conditional inde-
pendencies in the data. Asymmetry based algorithms in-
clude LiNGAM [18] and IGCI [8], and score based meth-
ods include GES [2], and neural network methods such as
NOTEARS [24].

Contributions: Shadow embedding methods for dis-
covering causal structure are not widely used in machine
learning. In a recent review of over 100 causal discovery
methods [22] only a small number of methods leveraged
the principles behind CCM. The goals of this paper are
therefore two-fold. (1) To introduce the principles behind
CCM and dynamic systems causality to the machine learn-
ing community, with hopes for its wider adoption and ex-
ploration. (2) We present Neural Shadow-Mapping (NSM),
a method for causal discovery from video. As far as we are
aware, NSM is the first application of the shadow-manifold
causal discovery principles to image/video data.

2. Method

The block diagram for NSM is shown in Figure 4. The
process may be broken down into 5 steps. Step (1): Video
frames are used to train a Pyro [1] implementation of the un-
supervised scene understanding method Attend, Infer, Re-
peat (AIR) [4]. This method provides frame-by-frame es-
timations of the object’s positions. In the example used in
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Figure 3. Illustrating corresponding neighborhoods of points in the
shadow manifolds (see text for details).
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Figure 4. Block diagram for NSM on a 2D example. Functions
in red-dashed boxes are trained using gradient descent. Functions
f(.) are fully connected neural networks.

the figure, there are two objects which each vary in their
horizontal positions. There are therefore two system di-
mensions, and AIR provides time series for these dimen-
sions X and Y. Step (2): Shadow embeddings MX and
MY are formed, and fed into a k-nearest neighbors algo-
rithm [3] to yield the neighborhoods indexed with the near-
est neighbor indices I from each embedding MX and MY ,
at each timepoint. For an example neighborhood at a sin-
gle timepoint, we have e.g., MIY

X ∈ Rp×k, where p is
the number of lags used to form the shadow embedding,
and k is the number of nearest neighbors. We can form
a batch over each indexed manifold by randomly select-
ing time points t∗ around which to form neighborhoods.
Step (3): MIX

X and MIY
X are encoded using three fully-

connected layers with non-linearity fencX
, whilst MIX

Y

and MIY
Y are fed through an equivalent fully-connected

encoder fencY
. Separate networks were used for each

neighborhood-index/variable combination to maintain inde-
pendence. Step (4): The encoders yield new embeddings
E

(.)
(.) of the indexed shadow embeddings. The motivation

for the encoder is yield a lower-dimensional representation
ameanable to interpretable linear regression: AĒ = Ê
where A is a learnable, diagonal weight matrix intended
to discover the causal links βxy and βyx. Ē is a stacked
matrix of row vectors EIX

X EIY
Y , that we use to predict Ê,

which constitutes EIY
X and EIX

Y , respectively. This step (4)
therefore represents a modified version of the CCM element
of the process, because traditional cross-mapping would
use e.g. EIX

X to predict EIX
Y - the superscript indices IX

would be used to index Y . In practice we found that map-
ping ‘within-variable’ using different indices yields better
results. The resulting β̂ coefficients were biased due to the
inherent correlation for within-variable mapping, but this
can be accounted for in the surrogate testing process. An
l2 loss between Ê and [EIY

X ,EIX
Y ] is used to optimize the

non-zero parameters in A. Step (5): The final step in-
volves reconstruction of the indexed manifolds MIY

X and
MIX

Y from the estimated EIY
X and EIX

Y via fully-connected

Video Graph p-val. (β̂XY ) p-val. (β̂Y X ) Identified?
X Y 0.61 0.24 X
X → Y 0.24 1.88e-6 X
X ← Y 3.31e-8 0.45 X
X ↔ Y 3.16e-19 1.66e-12 X
Time-Series Graph Threshold Identified?
X → Y Z 0.25 X
X ↔ Y Z 0.25 X
X → Z → Y → X 0.25 X
Y ← X → Z 0.25 X
X → Z ← Y 0.25 X
X ↔ Z → Y 0.25 X
X ↔ Z ↔ Y 0.25 X

Table 1. Upper: p-values from a one sided, 2-sample KS test be-
tween estimated path coefficients on video embeddings of bivari-
ate data with the structure represented by corresponding graphs,
and the IAAFT surrogates of those data (p > 0.01 means no ef-
fect). Lower: the lower portion is for trivariate time-series data.

decoders fdecX
and fdecY

, respectively. The error on the
reconstructions is measured using the l2 loss which is also
used to drive learning via backpropagation for steps (3)-(5).

3. Experiments

In order to demonstrate this method, two synthetic
datasets were created. The first is a video dataset, whereby
the horizontal positions of two objects varied according to
the coupled logistic map in Equation 3. Four time steps
are given as example in Figure 5. To explore the 3-variable
case, we also create tri-variate time series data according to
the equation below:

Xi[n+ 1] = Xi[n](ri − riXi[n]− βijXj [n]− βikXk[n])
(3)

for i, j, k = {1, 2, 3}.1 We set all r(.) = 3.9 and all
non-zero β(.,.) = 0.25. For both datasets, data are gen-
erated using random ∼ U [0, 1] initial conditions, and the
learned parameter matrix A is amortized over all these gen-
erations. The training process is repeated to acquire distri-
butions over the estimated parameters β̂ in A, which are
then inspected to discover causal connections. The discov-
ery process itself involves testing for significant increase
above a non-causal baseline. This baseline is established by
creating time series surrogates based on the Iterative Ampli-
tude Adjusted Fourier Transform (IAAFT) method [10, 17].
IAAFT creates surrogates which match the original data in

1In Table 1, X{1,2,3} are equivalent to X,Y, Z.
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Figure 5. Four timesteps from the two-variable video, overlaid
bounding boxes from AIR [4].



terms of their power spectra and therefore also their auto-
correlation.2 The set of resulting baseline parameters can
be used as a ‘null’ distribution and tested against the pa-
rameters of the original data using a one-sided, two-sample
Kolmogorov Smirnoff (KS) test. If the KS test statistic has
a p-value below the false-positive threshold α, then one may
infer statistical significance. We found that the KS test was
not required for the trivariate time-series data, and that a
simple fixed threshold of 0.25 could be used to infer the
presence of an effect. For the experiments, we set the num-
ber of runsNr = 100, α = 0.01, p = 10, w = 790, k = 10,
time series length = {20, 1000}, embedding dimension for
E = 6, batch size = 20, number of training iterations 3e5,
learning rate 3e − 4, and use an Adam [9] optimizer. No
hyperparameter tuning was performed.

The results for the two variable and three variable
datasets are shown in Table 1 where ‘identified?’ indicates
whether a link was discovered (but not the magnitude of
the link). NSM successfully recovered the true graph in all
cases.

4. Discussion and Limitations

NSM was able to discover causal links from video and
time-series data generated from dynamic systems. This is
a notable result, particularly because visually identifying
causality from the video is non-trivial. As is the case for
traditional CCM, the discovery of causal links is sensitive to
measurement noise and stochasticity. Furthermore, the dis-
advantages associated with nearest-neighbor methods, in-
clude the need for longer time series. Future work should
identify ways to improve its robustness to noise, possibly by
using existing techniques, and to operate with shorter time
series [14]. The aim should then be to test the generalization
of the method in discovering causal links in more challeng-
ing problems such as those involving human interaction or
traffic data.

References
[1] Eli Bingham, Jonathan P. Chen, and Martin Jankowiak et al.

Pyro: Deep universal probabilistic programming. JMLR, 20,
2019.

[2] D.M. Chickering. Optimal structure identification with
greedy search. JMLR, 3(Nov), 2002.

[3] T.M. Cover and P.E. Hart. Nearest neighbor pattern classifi-
cation. IEEE Trans. on Inf. Thr., 13(1):21–27, 1967.

[4] S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepes-
vari, K. Kavukcuoglu, and G. E. Hinton. Attend, infer,
repeat: fast scene understanding with generative models.
arXiv:1603.08575v3, 2016.

2We also validated these surrogates by creating non-causal system data
(i.e., by setting βxy = βyx = 0) and comparing the results with the
IAAFT results.

[5] C. Glymour, K. Zhang, and P. Spirtes. Review of causal
discovery methods based on graphical models. Frontiers in
Genetics, 10, 2019.

[6] C. Heinze-Deml, M.H. Maathuis, and N. Meinshausen.
Causal structure learning. Ann. Rev. Stat. App., 5, 2018.

[7] Y. Huang, Z. Fu, and C.L.E. Franzke. Detecting causality
from time series in a machine learning framework. Chaos,
20, 2020.

[8] D. Janzing, J. Mooij, J. Zhang, K.and Lemeire, J.
Zscheischler, P. Daniusis, B. Steudel, and B. Schölkopf.
Information-geometric approach to inferring causal direc-
tions. Artificial Intelligence, 182-183, 2012.

[9] D. P. Kingma and J. L. Ba. Adam: a method for stochastic
optimization. arXiv:1412.6980v9, 2017.

[10] J.H. Lucio, R. Valdes, and L.R. Rodriguez. Improvements to
surrogate data methods for nonstationary time series. Phys
Rev E Stat Nonlin Soft Matter Phys, 85, 2012.

[11] H. Ma, K. Aihara, and L. Chen. Detecting causality from
nonlinear dynamics with short-term time series. Scientific
Reports, 4(7464), 2014.

[12] R. May. Simple mathematical models with very complicated
dynamics. Nature, 26:459–467, 1976.

[13] J.M. McCracken and R.S. Weigel. Convergent
cross-mapping and pairwise asymmetric inference.
arXiv:1407.5696v1, 2014.

[14] D. Monster, R. Fusaroli, K. Tylen, A. Roepstorff, and J.F.
Sherson. Causal inference from noisy time-series data - test-
ing the convergent cross-mapping algorithm in the presence
of noise and external influence. Fut. Gen. Comp. Sys., 73,
2016.

[15] J. Pearl. Causality. Cambridge University Press, Cambridge,
2009.

[16] J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou,
E. Deyle, C. Glymour, and M. et al. Kretschmer. Inferring
causation from time series in earth system sciences. Nat.
Comm., 10(2553), 2019.

[17] T. Schreiber and A. Schmitz. Improved surrogate data for
nonlinearity tests. Physical Review Letters, 77(635), 1996.

[18] S. Shimizu, P.O. Hoyer, A. Hyvärinen, and A. Kerminen.
A linear non-Gaussian acyclic model for causal discovery.
JMLR, 7, 2006.

[19] P. Spirtes, C. Glymour, and R. Scheines. Causation, predic-
tion, and search. MIT Press, Cambridge, MA, 2nd edition,
2000.

[20] G. Sugihara, R. May, C.-h. Hsieh, E. Deyle, M. Fogarty, and
S. Munch. Detecting causality in complex ecosystems. Sci-
ence, 338, 2012.

[21] F. Takens. Dynamical Systems and Turbulence, Lecture notes
in Mathematics 898, chapter Detecting strange attractors in
turbulence. Springer, Berlin, Heidelberg, 1981.

[22] M.J. Vowels, N.C. Camgoz, and R. Bowden. D’ya like
DAGs? arXiv:2103.02582, 2021.

[23] H. Ye, E. Deyle, L.J. Gilarranz, and G. Sugihara. Distin-
guishing time-delayed causal interactions using convergent
cross mapping. Scientific Reports, 5(14750), 2015.

[24] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. DAGs
with NO TEARS: Continuous optimization for structure
learning. arXiv:1803.01422v2, 2018.


